首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dynamic fair resource allocation scheme is proposed to efficiently support real-time and non-real-time multimedia traffic with guaranteed statistical quality of service (QoS) in the uplink of a wideband code-division multiple access (CDMA) cellular network. The scheme uses the generalized processor sharing (GPS) fair service discipline to allocate uplink channel-resources, taking into account the characteristics of channel fading and intercell interference. In specific, the resource allocated to each traffic flow is proportional to an assigned weighting factor. For real-time traffic, the assigned weighting factor is a constant in order to guarantee the traffic statistical delay bound requirement; for non-real-time traffic, the assigned weighting factor can be adjusted dynamically according to fading, channel states and the traffic statistical fairness bound requirement. Compared with the conventional static-weight scheme, the proposed dynamic-weight scheme achieves capacity gain. A flexible trade-off between the GPS fairness and efficient resource utilization can also be achieved. Analysis and simulation results demonstrate that the proposed scheme enhances radio resource utilization and guarantees statistical QoS under different fairness bound requirements.  相似文献   

2.
Li  Bo  Lin  Chuang  Chanson  Samuel T. 《Wireless Networks》1998,4(4):279-290
In this paper, we propose and analyze the performance of a new handoff scheme called hybrid cutoff priority scheme for wireless networks carrying multimedia traffic. The unique characteristics of this scheme include support for N classes of traffic, each may have different QoS requirements in terms of number of channels needed, holding time of the connection and cutoff priority. The proposed scheme can handle finite buffering for both new calls and handoffs. Futhermore, we take into consideration the departure of new calls due to caller impatience and the dropping of queued handoff calls due to unavailability of channels during the handoff period. The performance indices adopted in the evaluation using the Stochastic Petri Net (SPN) model include new call and handoff blocking probabilities, call forced termination probability, and channel utilization for each type of traffic. Impact on the performance measures by various system parameters such as queue length, traffic input and QoS of different traffic has also been studied. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Quality of service (QoS) provisioning is an important issue in the deployment of broadband wireless access networks with real-time and non-real-time traffic integration. The Connection Admission Control (CAC) operation is essential to guarantee the QoS requirements of connections while achieving system efficiency. Cognitive Radio is seen as a solution to the current low usage of the radio spectrum and the problem of the fixed spectrum allocation. In this paper, we propose a novel cross-layer Cognitive Radio-based QoS support framework and Cognitive Radio-based CAC scheme in WiMAX point-to-multipoint systems. By using a cross-layer approach, the proposed solution can intelligently explore unused spectrums and spread to non-active spectrums to improve the capacity of the system significantly and provide QoS guaranteed service to real-time traffic. A queueing analytical modeling for the WiAMX system has been carried out. The key system performance parameters are obtained based on the queueing analytical model theoretically. Extensive simulation experiments have been carried out to evaluate the performance of our proposal. The simulation results show that our proposed solution can expand the capacity of WiMAX systems up to two times while providing QoS guaranteed service to real-time and non-real-time traffics.  相似文献   

4.
A novel radio resource management (RRM) scheme for the support of packet-switched transmission in cellular CDMA systems is proposed by jointly considering the physical, link, and network layer characteristics. The proposed resource management scheme is comprised of a combination of power distribution, rate allocation, service scheduling, and connection admission control. Power distribution allows individual connections to achieve their required signal-to-interference-plus-noise ratio, while rate allocation guarantees the required delay/jitter for real-time traffic and the minimum transmission rate requirement for non-real-time traffic. Efficient rate allocation is achieved by making use of the randomness and burstiness; of the packet generation process. At the link layer, a packet scheduling scheme is developed based on information derived from power distribution and rate allocation to achieve quality of service (QoS) guarantee. Packet scheduling efficiently utilizes the system resources in every time slot and improves the packet throughput for non-real-time traffic. At the network layer, a connection admission control (CAC) scheme based on the lower layer resource allocation information is proposed. The CAC scheme makes use of user mobility information to reduce handoff connection dropping probability (HCDP). Theoretical analysis of the grade of service performance, in terms of new connection blocking probability, HCDP, and resource utilization, is given. Numerical results show that the proposed RRM scheme can achieve both effective QoS guarantee and efficient resource utilization.  相似文献   

5.
In this paper, we propose a scheme to allocate resource blocks for the Long Term Evolution (LTE) downlink based on the estimation of the effective bandwidths of traffic flows, where users’ priorities are adaptively computed using fuzzy logic. The effective bandwidth of each user traffic flow that is estimated through the parameters of the adaptive β-Multifractal Wavelet Mode modeling, is used to attain their quality of service (QoS) parameters. The proposed allocation scheme aims to guarantee the QoS parameters of users respecting the constraints of modulation and code schemes (modulation and coding scheme) of the LTE downlink transmission. The proposed algorithm considers the average channel quality and the adaptive estimation of effective bandwidth to decide about the scheduling of available radio resources. The efficiency of the proposed scheme is verified through simulations and compared to other algorithms in the literature in terms of parameters such as: system throughput, required data rate not provided, fairness index, data loss rate and network delay.  相似文献   

6.
A node-by-node admission control and routing scheme for ATM networks is devised. The scheme is based on the subdivision of traffic into a number of classes, characterized by different performance requirements. At each network node, for all outgoing links, link capacity partitions are periodically assigned to the traffic classes, as the result of an optimization problem over a fixed time interval. Local access control rules compute the maximum number of connections of each class that a link can accept within the assigned capacity. Incoming call connection requests are forwarded in a hop-by-hop fashion. Each node traversed, first checks the presence of resources needed to accept a new connection and guarantee all quality of service (QoS) requirements. This is done by using the local access control rule. Then, it chooses the next node along the path on the basis of a distributed routing strategy. This minimizes a cost function accounting for local instantaneous information, as well as for aggregate information that is passed periodically among adjacent nodes. Two routing strategies are introduced. In the first scheme, a new call is rejected if, at a certain node along the path, there are not enough resources to guarantee QoS requirements, and no recovery mechanism is implemented. In the second scheme, an alternative path is looked for after the first failure. Simulation results are presented which show a comparison between the two proposed routing strategies. Comparison is also made between the proposed scheme and the other approaches. © 1997 John Wiley & Sons, Ltd.  相似文献   

7.
动态频谱接入策略是实现认知无线电网络高效利用频谱的关键。与传统认知无线电网络不同,认知mesh网络中不同QoS需求的多类型业务共同接入,为适应这一特点,提出服务区分的动态频谱接入策略。策略依据业务的QoS需求确立优先级,针对不同优先级业务采取不同的信道接入方案,实时业务依据最优传输延迟期望选择接入信道集合,在减小传输延迟的同时降低数据传输过程授权用户出现的概率,普通业务选择最优理想传输成功概率的信道,降低信道切换概率。理论与实验结果表明,与传统的认知网络频谱接入策略相比,提出的策略能提供不同业务的服务区分,满足实时业务的低延迟需求,降低数据传输的中断率,同时在授权信道空闲率与网络负载较大时吞吐量性能较优。  相似文献   

8.
In this paper, a novel scheduling scheme is proposed for multiple traffic classes to exploit multiuser diversity of the non-real-time (NRT) traffic. The proposed scheduling algorithm consists of two stages, i.e. at the first scheduling stage, the inter-traffic scheduler dynamically allocates the bandwidth resources to each traffic class by a periodic and triggered way with the objective of maximizing a room for NRT traffic while guaranteeing the quality of service (QoS) requirements of real-time (RT) traffics; at the second scheduling stage, the intra-traffic scheduler is used to schedule different users' packets within each traffic class simultaneously. The proposed algorithm not only enhances the system throughput but also satisfies the QoS requirements of RT traffic. Simulation results validate the effectiveness and good performance of the proposed scheme.  相似文献   

9.
We present a novel integrated analytical framework for analyzing the quality-of-service (QoS) performance measures in a wireless mobile multimedia network. The framework integrates physical, radio link, and network layer parameters and protocols to analyze the call-level and packet-level performances. In the network layer, call admission control (CAC) is responsible for deciding whether an incoming call can be accepted or not so that the performances of the ongoing calls do not deteriorate below the acceptable level. Also, an adaptive channel allocation (ACA) scheme is used to maximize the utilization of the radio resources. In the data link layer, queue management and error control are used for non-real-time loss-sensitive traffic. In the physical layer, a finite state Markov channel (FSMC) is used to model channel fading, and adaptive modulation is used for rate adaptation according to channel quality. Various call-level and packet-level QoS measures for real-time, non-real-time, and best-effort traffic are obtained. The analytical results are validated by extensive simulations. Examples of the applications of the presented analytical framework are also provided  相似文献   

10.
A frequency division duplex (FDD) wideband code division multiple access (CDMA) medium access control (MAC) protocol is developed for wireless wide area multimedia networks. In order to reach the maximum system capacity and guarantee the heterogeneous bit error rates (BERs) of multimedia traffic, a minimum-power allocation algorithm is first derived, where both multicode (MC) and orthogonal variable spreading factor (OVSF) transmissions are assumed. Based on the minimum-power allocation algorithm, a multimedia wideband CDMA generalized processor sharing (GPS) scheduling scheme is proposed. It provides fair queueing to multimedia traffic with different QoS constraints. It also takes into account the limited number of code channels for each user and the variable system capacity due to interference experienced by users in a CDMA network. To control the admission of real-time connections, a connection admission control (CAC) scheme is proposed, in which the effective bandwidth admission region is derived based on the minimum-power allocation algorithm. With the proposed resource management algorithms, the MAC protocol significantly increases system throughput, guarantees BER, and improves QoS metrics of multimedia traffic.  相似文献   

11.
This paper presents a new channel allocation scheme, namely the dynamic partition with pre‐emptive priority (DPPP) scheme, for multi‐service mobile cellular networks. The system is modelled by a two‐dimensional Markov process and analysed by the matrix‐analytic method. A pre‐emptive priority (PP) mechanism is employed to guarantee the quality of service (QoS) requirement of the real‐time (RT) traffic at the expense of some degradation of non‐real‐time (NRT) traffic, while the victim buffer compensates the degradation and has no negative impact on the RT traffic. The complete service differentiation between new calls and handoff calls from different traffic classes is achieved by using the dynamic partition (DP) concept with the help of related design parameters. The performance analysis and numerical results show that the DPPP scheme, compared with the existing schemes, is effective and practical in multi‐service environments. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Code-division multiple access has been widely accepted as the major multiple access scheme in third-generation mobile communication systems. Wide-band CDMA and its hybrid associate time-division CDMA are key elements of the IMT2000 framework of standards. Since the beginning of the 1990s there has been enormous research activity in analysis of the soft (i.e., interference limited) capacity of these CDMA-based systems. Optimal usage of the soft capacity to provide, maintain, and guarantee QoS for different service classes is now becoming a very important issue. Therefore, interest in radio resource allocation has recently. This article presents an overview of RRA schemes (primarily for CDMA-based systems) that are flexible, support traffic services with various QoS requirements, minimize call/session blocking and dropping probabilities, and have acceptable radio resource utilization  相似文献   

13.
The IEEE 802.4 token bus standard defines an optional priority scheme to handle multiple classes of data. It allocates the channel bandwidth among different priority classes of messages by a set of timers at each station. An analytical model for the priority scheme is presented. The model relates the throughput of each priority class of messages to the traffic intensities of different classes, the target rotation times, and the high-priority token holding time. The network is assumed to be symmetric with respect to its parameters and the traffic distribution among nodes. Simulation results are used to evaluate the accuracy of the model. The model provides means of evaluating the network throughput and can be used to determine the time values to meet the throughput requirements of different classes of traffic  相似文献   

14.
The CAC (call admission control), which can guarantee call services to meet their QoS (Quality of Service) requirements, plays a significant role in providing QoS in wireless mobile networks. In this paper, an adaptive multiguard channel scheme‐based CAC strategy is proposed to prioritize traffic types and handoff calls. The major aim of the study is to develop the analytical model of the priority traffic and handoff calls based adaptive multiguard channel scheme and examining the performance through setting the value of the adaptive ratio parameters. Our proposed scheme tries to mediate the advantages and drawbacks of the static and dynamic CAC schemes. The proposed scheme is quite different from previous studies because multithreshold values have been considered for multiclass traffic by adaption parameters, and a closed form analytical model is developed The numerical results show that this scheme can be used to keep the targeted QoS requirement by suitably setting the adaptive ratio parameters. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
In third generation WCDMA systems, shared channels allow many users to jointly utilize a single Orthogonal Variable Spreading Factor (OVSF) code. In this paper, we propose a Scheduling Algorithm with Dynamic Priority Assignment (DPA) which is designed for the Downlink-Shared channel (DSCH) of 3G WCDMA systems and operates within a cross layer framework. The DPA scheduler has low computational complexity and is able to provide QoS differentiation among traffic flows based on their delay sensitivity. Through the cross layer framework, DPA takes into account the variations of the wireless channel, and exploits processing gain to improve transmission quality and enable service provisioning when possible. Additionally, by providing a guaranteed rate per traffic flow at each scheduling period, DPA can offer a deterministic delay bound to each connection when transmissions are reliable. Stochastic delay guarantees under transmission power limitations are also provided when the traffic flows are identical. Simulation results show that DPA outperforms Feasible Earliest Due Date (FEDD), a variation of EDD for wireless environments.  相似文献   

16.
Switching for IP-based multimedia satellite communications   总被引:1,自引:0,他引:1  
This paper discusses the structure and performance of an Internet protocol (IP)-based satellite communications system to provide multimedia services. Uplink scheduling and switching to support IP differentiated services (DiffServ) traffic in a multibeam environment are addressed. End-to-end performance of a multibeam satellite communications system using an on-board switch is evaluated using simulation. Aggregate real-time and non-real-time traffic using different DiffServ classes is considered and the effects of their burstiness and long-range dependent behavior on the queueing performance are examined. Multiple-frequency time-division multiple-access is used on the uplink in conjunction with a dynamic capacity allocation scheme. Higher priority is given to voice and video real-time traffic to avoid delay variation. On-board downlink queue for non-real-time traffic is provided to achieve high statistical multiplexing gain.  相似文献   

17.
In this paper the performance of the reverse link of a multicell DS-CDMA system with coexisting open-loop and closed-loop power controlled users transmitting heterogeneous traffic is analyzed. Real-time and non-real-time traffic performance expressions are obtained. The analysis includes a different channel coding scheme for each traffic type selected in accordance to their specific QoS requirements. Moreover, the study takes into account the effect of frequency-selective Nakagami-m fading with arbitrary parameters, correlated log-normal shadowing, power control imperfections and selection-based macroscopic diversity. How the power control imperfections, the number of resolvable paths, or the proportion of simultaneous open-loop and closed-loop power controlled users affect the reverse link capacity of the system is discussed in detail. Analytical results are also given for systems with different processing gains and for propagation environments with different multipath intensity profile (MIP) distributions.  相似文献   

18.
针对WCDMA系统无线接入控制的问题和WCDMA系统各种业务的特点,提出了能有效保障QoS的上行接入控制算法———PCD(Priority Code based DiffServ)算法。方案依据具体业务的分类和QoS指标来分配网络资源,解决了3G系统无线接入控制对实时业务质量的影响问题。设计了实时和非实时业务呼叫的接入控制信令流程,并对提出的算法和现有的接入算法进行了仿真评估。  相似文献   

19.
为解决多业务环境下VSAT ATM中多址协议的信道分配效率及QoS问题,提出了基于复用的自适应随机预约多址协议(MRRAA)。在MRRAA中,由于rt-VBR业务所需带宽变化,其预约的时隙常有剩余,能被其他业务复用。复用rt-VBR业务剩余时隙时,按优先级顺序,首先是nrt-VBR,其次ABR,最后是UBR业务。用流体流方法表明,MR RAA在信源突发性比较高时,能大幅度提高信道的利用率,而又不违反业务的QoS要求。  相似文献   

20.
The uplink access control problems for cellular code-division multiple-access (CDMA) systems that service heterogeneous traffic with various types of quality-of-service (QoS) and use multicode CDMA to support variable bit rates are addressed. Considering its distinct QoS requirements, class-I real-time traffic (e.g., voice and video) is differentiated from class-II non-real-time traffic (e.g., data). Connection-oriented transmission is achieved by assigning mobile-oriented code channels for class-I traffic, where each corresponding mobile needs to pass an admission test. Class-II traffic is transmitted in a best-effort manner through a transmission-rate request access scheme which utilizes the bandwidth left unused by class-I traffic. Whenever a mobile has class-II messages to transmit, the mobile requests code channels via a base station-oriented transmission-request code channel, then, according to the base station scheduling, the transmission is scheduled and permitted. Addressed are the admission test for class-I connections, transmission power allocation, and how to maximize the aggregate throughput for class-II traffic. The admission region of voice and video connections and the optimum target signal-to-interference ratio of class-II traffic are derived numerically. The performance of class-II traffic transmissions in terms of average delay is also evaluated and discussed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号