首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 396 毫秒
1.
Enhanced desulfurizing flotation of high sulfur coal was investigated using the sonoelectrochemical method. The supporting electrolyte used in this process was calcium hydroxide and the additive was anhydrous ethanol. The effects of treatment conditions on desulfurization were studied by a single-factor method. The conditions include anhydrous ethanol concentration, sonoelectrolytic time, current density, and ultrasound intensity. For the coal sample with a particle size of − 0.076 mm, the optimal experimental conditions achieved for anhydrous ethanol, sonoelectrolytic time, current density, and ultrasound intensity are 2.1 mol/L, 20 min, 15 × 10− 3 A/cm2, and 1.2 W/cm2, respectively. Optimal conditions cause a sulfur reduction of up to 75.4%. The raw and treated coals were analyzed by infrared spectroscopy and a chemical method. Pyritic sulfur, organic sulfur, and ash are partially removed. Compared with enhanced flotation by ultrasound or electrochemistry, desulfurizing flotation of high sulfur coal by sonoelectrochemistry is an effective technology.  相似文献   

2.
Infra-red and Raman spectra of intractable carbonaceous materials are difficult to obtain. For coals, carbon blacks, and some chars infra-red spectra have been obtained with relative ease. Only recently have good infra-red transmission spectra of activated carbons been obtained. More difficult materials have now been successfully studied by the transmission infra-red method, most notably ground graphite (non-crystalline), through the use of efficient and extensive grinding. Intense infra-red bands are observed at about 1590 and 1360 cm−1 for ground graphite, carbon blacks, and some activated carbons. Laser-Raman spectra of coals, carbons, and graphites have two lines at about the same frequencies as the infra-red bands. However, the similarity of these laser-Raman spectra indicates in the case of coal that we may be observing the spectrum of carbonized coal rather than of coal, due to degradation of the sample by the laser beam. These new spectral results necessitate reassignment of some bands in the infra-red spectra of coals. Graphitic structures (non-crystalline) are believed to be responsible for the 1600 cm−1 band in coals and the broader 1360 cm−1 band, which fit closely the broad band contour in the infra-red spectra of coals from 1800 to 900 cm−1. The intensities of the 1600 and 1360 cm−1 bands in ground graphite are more than sufficient to account for the band intensities observed in the spectra of coals and chars. Diamond-like structures such as quaternary carbon atoms are weak absorbers and cannot be responsible for either of these bands.  相似文献   

3.
Boleslav Taraba 《Fuel》2010,89(11):3598-3601
Subaquatic oxidation of two bituminous coals by water-dissolved oxygen was investigated using batch reactor equipped with membrane oxygen sensor. Effects of time, temperature and coal grain size were studied as basic parameters influencing the oxidation process. Obtained results showed the subaquatic coal oxidation can be considered as interaction of the first reaction order with respect to oxygen. From temperature dependence of oxidation rate, activation energies = 72 ± 4 kJ mol−1 and/or 50 ± 4 kJ mol−1 were calculated. For the samples, oxygen consumption RO2 was found to be in the range of 2 × 10−7 mol O2 kg−1 s−1 to 6 × 10−7 mol O2 kg−1 s−1, such values being quite comparable with RO2 for aerial oxidation of bituminous coals.  相似文献   

4.
A low-rank Slovak sub-bituminous coal from the Handlová deposit was physically treated by washing in a water-only cyclone with the goal to find the separation effect for inorganic (mainly Fe-bearing minerals) and organic substances (humic acids, diterpanes). A high-quality coal product with the ash content in the dry matter of 9.02% and carbon content of Cd = 68.12% at a mass yield of 29.51% was obtained using the water-only cyclone processing. At first, the physically treated coal samples were detailed characterized by XRD, 57Fe Mössbauer spectroscopy, FT-IR and HR-TEM. In addition to non-crystalline organic coal components, inorganic compounds belonging to silicate minerals (kaolinite, muscovite and quartz) as well as to Fe-bearing sulphide minerals (pyrite) were identified in the sub-bituminous coal by XRD. 57Fe Mössbauer spectroscopy detected the presence of iron carbonate (siderite), iron-containing clay mineral and two sulphur-containing minerals (pyrite, jarosite) in the untreated coal. On the other hand, only one Fe-bearing mineral, (pyrite) was found in the washed coal. Effect of the physical separation is also demonstrated in FT-IR spectra, where the peak at 1040 cm−1 representing the silicate component in the untreated sample is not detectable in the washed coal sample. Presence of extractive organic substances, i.e. humic acids and tetracyclic diterpane (16α(H)-phyllocladane), in the hydrocyclone products is also evidenced. It was confirmed that the isolated diterpenoic compound is attendant in the washed product with the lowest ash content and it is assimilated with the organic part of coal. Surprisingly, humic acids were found in the highest concentration in the slurry that has the highest content of ash (63.14%).  相似文献   

5.
B.K. Mazumdar 《Fuel》2002,81(1):119-124
Konovalov's correlation for molar heats of combustion of organic compounds has been suitably adopted for coal. Studies of a number of coal models, supported by experimental data on actual coals of varying rank, have revealed that ‘x’ the structure-related factor remains virtually constant at about 0.43 MJ kg1 for all high volatile coals (C≤81%) beyond which it decreases almost linearly with increasing rank. A logical derivative of the correlation is also presented to give calorific values of coal on dry basis, from lignite to anthracite. Accuracy of the new correlation has been found to be as good as those of previous correlations, SD being about ±0.16, whereas its potential accuracy has been found to be as low as 0.05 MJ kg1. Such high accuracy has not been hitherto reported for any other correlation. Significance of this vis-à-vis the values of ‘x’ and hence the structural pattern of coal is also discussed.  相似文献   

6.
Alar Jänes  Thomas Thomberg  Enn Lust 《Carbon》2007,45(14):2717-2722
Nanoporous carbide-derived carbon (CDC) was synthesised from vanadium carbide (VC) powder via gas phase chlorination in the temperature range from 500 to 1100 °C. The XRD analysis of nanoporous carbon powder samples was carried out to investigate the structural changes (graphitisation) of nanoporous carbons synthesised. The first-order Raman spectra showed the absorption peak at ∼1582 cm−1 and the disorder-induced (D) peak at ∼1345 cm−1. The low-temperature N2 adsorption experiments were performed and a specific surface area up to 1305 m2 g−1 and total pore volume up to 0.66 cm3 g−1 were obtained.  相似文献   

7.
A series of coal-based activated carbons representing a wide range of mesopore content, from 16.7 to 86.9%, were investigated as an electrode in electric double layer capacitors (EDLCs) in 1 mol l−1 H2SO4 and 6 mol l−1 KOH electrolytic solutions. The activated carbons (ACs) used in this study were produced from chemically modified lignite, subbituminous and bituminous coals by carbonization and subsequent activation with steam. The BET surface area of ACs studied ranged from 340 to 1270 m2 g−1. The performance of ACs as EDLC electrodes was characterized using voltammetry, galvanostatic charge/discharge and impedance spectroscopy measurements. For the carbons with surface area up to 1000 m2 g−1, the higher BET surface area the higher specific capacitance (F g−1) for both electrolytes. The surface capacitance (μF cm−2) increases also with the mesopore content. The optimum range of mesopore content in terms of the use of ACs studied for EDLCs was found to be between 20 and 50%. A maximum capacitance exceeding 160 F g−1 and a relatively high surface capacitance about 16 μF cm−2 measured in H2SO4 solution were achieved for the AC prepared from a sulfonated subbituminous coal. This study shows that the ACs produced from coals exhibit a better performance as an electrode material of EDLC in H2SO4 than in KOH electrolytic solutions. For KOH, the capacitance per unit mesopore surface is slightly lower than that referred to unit micropore surface (9.1 versus 10.1 μF cm−2). However, in the case of H2SO4 the former capacitance is double and even higher compared with the latter (23.1 versus 9.8 μF cm−2). On the other hand, the capacitance per micropore surface area is the same in both electrolytes used, about 10.0 μF cm−2.  相似文献   

8.
Pre-combustion microbial desulphurization of coal containing total sulphur (3.90%) and pyritic sulphur (2.80%) has been evaluated in a coal slurry reactor. The coal slurry reactor operated at hydraulic retention time (HRT) of 96 h with a coal pulp density of 15 percent and remove 79 percent of pyritic sulphur and 76 percent of ash with an increase in the calorific value of coal from 4400 to 6800 kcal kg−1 at a pyritic load of 1.9 kg pyritic sulphur kg−1 MLSS d−1. The treated coal yield is 72 percent. The biochemical kinetic coefficients, viz. yield coefficient (Y) and decay coefficient (Kd) in the coal slurry reactor system are 0.178 and 0.007 d−1, respectively, while maximum growth rate (μmax) and half saturation rate constant (Ks) are 0.025 h−1 and 0.220 g l−1 as pyrite, respectively.  相似文献   

9.
C.K. Man  J.R. Gibbins 《Fuel》2011,90(1):294-304
A set of 13 coals of different rank has been tested for ignition propensity in a 20-L explosion chamber simulating oxyfuel combustion gas conditions. Their char residues were also analysed thermogravimetrically. The effects of coal type, coal concentration (from 100 to 600 g/m3), O2 in CO2 atmospheres (up to 40% v/v) and particle size were investigated.The higher rank coals were significantly more difficult to ignite and mostly required higher energy chemical igniters (1000 or 2500 J) whereas the lower rank coals could be ignited with a 500 J igniter even at low coal dust concentrations.The minimum explosibility limit/ignition concentration in air varied slightly around a value of 200 g/m3, a little higher for low volatile coals and a little lower for high volatile coals.The ignition limit changed significantly, however, with O2 concentration in CO2, where coals required more oxygen to ignite. Most coals failed to ignite at all in 21% v/v O2 in CO2, but an increase to 30 or 35% v/v O2 gave ignition patterns similar to those in air. In addition, the minimum ignition concentration decreased with increase in O2. However, a further increase to 40% v/v O2 did not generally affect the minimum ignition concentration.Particle size had a non-linear effect on coal ignition. The fine particles (<53 μm) behaved almost identical to the whole coal. However, the larger size fraction (>53 μm) was generally more difficult to ignite and exhibited a much lower weight loss.  相似文献   

10.
XRD evaluation of KOH activation process and influence of coal rank   总被引:1,自引:0,他引:1  
Three Japanese coals with different rank (Ohmine, Miike and Taiheiyo coals) were activated with KOH from 300 to 850 °C. Higher rank coal with lower oxygen content showed a high yield and also a large specific surface area determined by N2 adsorption isotherms. X-ray diffraction (XRD) patterns of the activated carbons were measured to characterize stacking structure of aromatic layers by standardized analysis of coal by XRD method, considering the presence of slit-shaped micropores among the stacking structure. Structural parameters obtained by this method were related to the yield and the surface area in order to discuss the feature of micropores developed during the activation.  相似文献   

11.
R Pietrzak 《Fuel》2003,82(6):705-713
Five coals of different rank and of different content of sulphur were subjected to oxidation by peroxyacetic acid (PAA), 5% nitric acid, by oxygen in 0.5N Na2CO3 aqueous solution and the air oxidation for 7 days at 125 °C. The processes of oxidation were carried out for coal samples demineralised by the Radmacher method, and additionally for the pyrite-free coal samples. Proximate, elemental and spectral analyses of the initial coals and the products obtained from them were made. The most effective oxidising agents were 5% HNO3 and PAA. As a result of oxidation, a significant part of the organic components of coal is converted into acid soluble products. Depending on the oxidising agent, the loss of sulphur in the solid oxidation products was different and the highest for the coal samples oxidised with HNO3 and PAA. Formation of oxidised sulphur species (SO and -SO2) was detected by IR spectroscopy. FTIR data also provide useful information on evolution of the molecular structure of different rank coals on oxidation, in particular in the carbonyl and aliphatic ranges (1800-1500 and 3500-2800 cm−1).  相似文献   

12.
The pyrolysis of tea waste was studied for determining the main characteristics and quantities of liquid and solid products. Particular investigated process variables were temperature (673-973 K), heating rate (5-700 K min−1) and nitrogen gas flow rate (200-800 cm3 min−1). The maximum oil and char yields are 30.4 (773 K) and 43.3% (673 K), respectively. The liquid and its aliphatic sub-fraction were characterized by elemental analysis, FT-IR, 1H NMR, and GC/MS. The char was characterized with elemental analysis, SEM, BET, and FT-IR techniques. The aliphatic sub-fraction of the obtained bio-oil contains predominantly n-alkanes and alkenes, and branched hydrocarbons. According to the experimental results the liquid products can be used as liquid fuels, whereas the solid product seems to be not suitable for adsorption purposes, due to having low surface areas.  相似文献   

13.
The oxidative behavior of antibiotic roxithromycin standard was studied at a gold electrode in 0.05 M NaHCO3 using cyclic linear sweep voltammetry and differential pulse voltammetry. It was found that the value of the oxidative peak of pure roxithromycin at 0.81 V vs. SCE in 0.05 M NaHCO3 at a scan rate of 50 mV s−1 is a linear function of the concentration in a range 0.10006-0.654 mg cm−3. It was also found that peak current density at 0.75 V vs. SCE at a scan rate of 2 mV s−1, pulse amplitude of 25 mV and pulse time of 0.1 s exhibits linear dependence on the concentration of roxithromycin from 0.1006 to 0.476 mg cm−3. Roxithromycin as a content of solid dosage form and urine was quantitatively determined and the obtained results were checked by HPLC.  相似文献   

14.
The present paper describes the characterization of Pakistan lignite coal, derived humic acids (HAL) and nitrohumic acids (NHA) along with the standard leonardite humic acids (LHA). The study utilized chromatographic and spectroscopic techniques to characterize the structure of coal and derived materials. Pyrolysis coupled to gc/ms was conducted with and without methylating agent (tetramethyl ammonium hydroxide). The pyrolysis study resulted in releasing mainly fatty acid methyl esters, different series of hydrocarbons and α, ω-dicarboxylic acid methyl esters. Triterpenoids, syringic and ρ-coumaric compounds and aromatic compounds derived from lignin moieties were also detected. Fourier transform infrared (FT-IR) and NMR data helped to evaluate the influence of coal rank on regeneration and nitration processes with respect to chemical structural composition of coal and derived materials. FT-IR spectra of four materials were similar except that NHA showed an absorption band at 1532 cm−1, thus confirming the presence of -NO2 groups. 13C NMR indicated higher aromaticity and less hydroxylalkyl material in HAL than NHA. The elemental composition and acid functional group content of four materials were also reported.The combination of results from different analytical techniques gives an improved understanding of the Pakistan coal nature and helpful for its future utilization.  相似文献   

15.
Micro- and mesoporous carbide-derived carbon (CDC) was synthesised from molybdenum carbide (Mo2C) powder by gas phase chlorination in the temperature range from 400 to 1200 °C. Analysis of XRD results show that C(Mo2C), chlorinated at 1200 °C, consist mainly on graphitic crystallites of mean size, La = 9 nm and Lc = 7.5 nm. The first-order Raman spectra showed the graphite-like absorption peak at ∼1587 cm−1 and the disorder-induced (D) peak at ∼1348 cm−1. The low-temperature N2 adsorption experiments were performed and a specific surface area up to 1855 m2 g−1 and total pore volume up to 1.399 cm3 g−1 were obtained. Sorption measurements showed the presence of both micro- and mesopores after chlorination at 400-900 °C and only mesopores after chlorination at 1000°-1200 °C. Stepwise formation of micro- and mesopores was achieved and the peak pore size can be shifted from 0.8 nm up to 4 nm by increasing the chlorination temperature.  相似文献   

16.
S. Samanli 《Fuel》2011,90(2):659-664
Various studies have been carried out on the effect of microwave-treatment on grinding different types of coal. However, the effect of microwave treatment on grinding coal samples −3.35 mm in size which can be considered to be fine is still under investigation. The purpose of this paper is to make contributions to these studies conducted. In the study, lignite coal samples with pyritic sulphur and 25% structural moisture were crushed below −3.35 mm particle size using jaw and cone crushers and then classified into three different mono size groups by Russel sieve. For a complete removal of the structural moisture from the lignite coal, a microwave application with 600 W needs approximately 35% more energy consumption than that with 850 W. The untreated coal samples and the ones treated with microwave at 850 W were ground for 5, 15, 30, 60, 120 s in a stirred media mill. The breakage rates of microwave-treated coal increased and accordingly the ground products of microwave-treated coal yielded finer particles than −106 μm as compared to untreated coals. The untreated and microwave-treated feed coals of −3350 μm and −1180 μm particle sizes were ground for 2 min in the stirred media mill. It was found that the increases in the rate of weight percentages for −106 μm particle size fraction after 2 min of grinding of untreated and microwave-treated feed coals of −3350 μm and −1180 μm were found to be 15.81% and 2.69%, respectively. Moreover, Hardgrove Index (HGI) test results of lignite coal showed that the HGI index value increased by approximately 23% after microwave treatment with 850 W.  相似文献   

17.
The primary byproduct of current oil shale oil extraction processes is semicoke. Its landfill deposition presents a potential threat to the environment and represents a waste of a potentially useable byproduct. Here we examine the sorptive characteristics of oil shale semicoke. Oil shale samples from Estonia, China and the United States were pyrolyzed at 500 and 1000 °C and their products analyzed for organic char content, surface area and porosity. Pyrolysis of the oil shales at temperatures of 500-1000 °C yields semicokes with organic char contents from 1.7% to 17.5% and BET surface areas of 4.4-57 m2 g−1, corresponding to 100-550 m2 g−1 of organic char. For comparison, the BET surface areas of class F coal fly ashes (combustion byproducts of bituminous coals) typically range from 2 to 5 m2 g−1, corresponding to 30-60 m2 g−1 of carbon while class C fly ash (from low rank coals) have carbon BET surface areas comparable to oil shale semicoke organic char surface areas.  相似文献   

18.
A needle penetrometry was performed loading steady force in a range from 1×10−3 to 2 N to pelletized coal upon heating via a cylindrical needle. From the observed effects of shear rate on apparent viscosity of softening coal pellet, defined as the shear-rate to shear-stress ratio, it was found that the pellet behaved as a Newtonian fluid for shear rates lower than a critical one while as a pseudo-plastic fluid for higher shear rates. The penetrometry was also carried out varying the force with time. The variable force loading enabled to maintain the shear rate well below the critical one, and thereby to measure the apparent viscosity of coal pellets as Newtonian fluids over a temperature range from 600 to 800 K. Upon heating at 10 K min−1, the apparent viscosity of Goonyella coal pellet decreased from about 1010 Pa s at 640 K down to a minimum of about 104 Pa s at 755 K, and increased up to 109 Pa s at 800 K. In a course of heating as above, the viscosity of Blind Canyon coal pellet decreased above 600 K, underwent a minimum of about 106 Pa s at 715 K, and increased up to 1010 Pa s at 770 K. Decreasing the heating rate from 10 to 3 K min−1 caused the minimum viscosities of the pellets to increase by 1-2 orders of magnitude.  相似文献   

19.
Qi Fu 《Polymer》2008,49(23):4981-4988
A novel hyperbranched polymer endcapped with 4-methylcoumarin group (MCTH40) was prepared via thiol-ene addition reaction of thiol-modified hyperbranched polyester (fully thioglycolic acetate of Boltorn™ H40, TAH40) with a vinyl monomer (7-(4-vinyl-benzyloxyl)-4-methylcoumarin, VBMC), and characterized with 1H NMR and FT-IR spectroscopies. Its reversible photo-crosslinking/photo-cleavage behavior was evaluated based on the UV-vis spectroscopic analysis, and compared with the linear polymer, poly(7-(4-vinyl-benzyloxyl)-4-methylcoumarin (PVBMC)). The absorbance at 319 nm in the UV-vis spectrum gradually decreased under UVA irradiation (λmax = 365 nm), and then rapidly recovered under UVC irradiation (λmax = 254 nm). The fluorescence intensity of MCTH40 (λmax = 469 nm) recovered to 85.2% of original level after photo-cleavage under UVC irradiation, higher than 83.5% of PVBMC (λmax = 472 nm). The UV-vis analysis results indicated that MCTH40 performs more rapid photo-response than linear PVBMC under the same conditions. Furthermore, the average doses of UVA irradiation for the maximum degree of photo-crosslinking were 22.08 J cm−2 for MCTH40 and 28.29 J cm−2 for PVBMC. The average UVC doses of complete photo-cleavage were 9.44 J cm−2 for MCTH40 and 9.58 J cm−2 for PVBMC. The GPC analysis indicated that the average molecular weight and its PDI of MCTH40 showed a slight increase after three reversible cycles.  相似文献   

20.
The investigation of hydro-conversion behavior of the heavy intermediate products derived from coal direct liquefaction is advantageous to optimize the technological conditions of direct coal liquefaction and improve the oil yield. In this paper, the hydro-conversion of preasphaltenes catalyzed by SO42−/ZrO2 solid acid was investigated based on the structural characterization of preasphaltenes and its hydro-conversion products, and the determination of products distribution and the kinetics of preasphaltenes hydro-conversion. The results indicated that the content of condensed aromatic rings increased, and the contents of hydrogen, oxygen and aliphatic side chains of preasphaltenes decreased with the increase of coal liquefaction temperature. The preasphaltenes showed higher hydro-conversion reactivity while SO42−/ZrO2 solid acid was used as catalyst. Higher temperature and longer time were in favor of increasing the conversion and the oil + gas yield. The conversion of preasphaltenes hydro-conversion under 425 °C, for 40 min reached 81.3% with 51.2% oil + gas yield. SO42−/ZrO2 solid acid was in favor of the catalytic cracking rather than the catalytic hydrogenation in the hydro-conversion of preasphaltenes. The activation energy of preasphaltenes conversion into asphaltenes was 72 kJ/mol. The regressive reactions were only observed at a higher temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号