首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
类金刚石薄膜(DLC)具有十分优异的减摩耐磨性能,是一种极具发展潜力的固体润滑材料。但其摩擦学性能受到很多因素的影响,这些因素主要可以分为两大类:固有因素和外在因素。在不同的固有因素和外界因素影响下DLC薄膜的摩擦学性能会产生较大差异,这大大制约了人们对其摩擦学行为及摩擦机理的认识,限制了其应用范围的扩展。总结了目前有关DLC薄膜摩擦机理的三种理论,即转移膜理论、滑行界面石墨化理论和化学吸附钝化悬键理论,并在此基础上概括分析了各固有因素和外界因素对DLC薄膜摩擦学性能的影响及其机理,提出未来可以从基础理论和相关技术两方面对DLC薄膜的摩擦学性能展开深入研究。  相似文献   

2.
脉冲偏压对PECVD制备DLC薄膜的结构及性能的影响   总被引:1,自引:0,他引:1  
在不锈钢基材表面利用等离子体增强化学气相沉积技术(PECVD)改变脉冲偏压制备不同结构类金刚石薄膜(DLC)。分别采用表面轮廓仪、扫描电镜、拉曼光谱及电子探针分析薄膜的表面粗糙度、断面形貌、薄膜结构及成分,采用纳米压痕仪及划痕仪测试薄膜的纳米硬度、弹性模量和膜基结合力,采用球盘摩擦试验机测试薄膜在大气环境中的摩擦学性能。结果表明:脉冲偏压显著影响PECVD制备的DLC薄膜的表面粗糙度、微观形貌、膜基结合力、纳米硬度及摩擦学性能;随偏压的增大,DLC薄膜的表面粗糙度,摩擦因数及磨损量都先减小后增大,而膜基结合力则先增大后减小。其中2.0 k V偏压制备的DLC薄膜具有最强的膜基结合力,而1.6 k V偏压制备的DLC薄膜具有最低的表面粗糙度、最高的硬度和最优的减摩耐磨性能。  相似文献   

3.
采用碳离子束注入辅助蒸发技术低温沉积了DLC薄膜,对薄膜沉积的工艺参数进行了优化,并对该薄膜的摩擦学行为进行了探讨。研究发现:碳离子束注入辅助蒸发技术沉积的DLC薄膜在离子量为3.0×1017ions/cm2,沉积率为0.1nm/s时具有最小的摩擦因数(<0.1);电流为2.0mA比3.0mA条件下所沉积的DLC薄膜表面光滑;磨损试验后,DLC薄膜的表面只有轻微磨损的痕迹。  相似文献   

4.
采用离子束溅射沉积镀膜法制备了DLC薄膜,研究了偏压对薄膜性能的影响。通过原子力显微镜(AFM)和拉曼光谱对DLC薄膜的表面形貌以及内部结构进行了分析表征。并用UTM-2摩擦磨损仪对其摩擦学性能进行了测试。结果表明,利用离子束溅射沉积制备的DLC薄膜具有良好的减摩抗磨性能。随着偏压的增加薄膜的摩擦因数先减小后增加,在-150 V偏压时,薄膜的摩擦学性能最好。  相似文献   

5.
对涂覆DLC薄膜的MEMS球轴承的接触性能进行理论研究。根据微球轴承的接触型式,建立微球与表面涂覆DLC薄膜的滚道之间的有限元模型,考察不同DLC薄膜弹性模量和厚度,以及不同微球材料和直径对微球轴承接触特性的影响。结果表明,高弹性模量的厚DLC薄膜可以降低微球轴承滚道表面的最大径向拉应力和界面剪切应力,但却提高了最大接触压力;轴承内的轴向最大von Mises等效应力和界面应力梯度可通过减小DLC薄膜的弹性模量或增加薄膜厚度来降低;直径较大的440C不锈钢微球可以改善涂覆DLC薄膜的微球轴承的接触性能。  相似文献   

6.
不同金属基材上类金刚石薄膜的摩擦特性   总被引:2,自引:1,他引:1  
针对类金刚石(DLC)薄膜在精密机械零件中的应用,研究了在常温条件下沉积高界面强度的DLC薄膜的技术,以提高DLC薄膜与金属基材之间的结合强度.通过在基材与薄膜之间沉积加入a-Si:H中间过渡层,研究了在不同金属基材上DLC薄膜的结合强度.采用Ball-on-Disk方法评价了薄膜的摩擦特性并测定其摩擦系数、疲劳破坏寿命和磨耗.实验结果表明:在薄膜与金属基材之间加入a-Si:H过渡层后,界面的结合(键合)强度得到了明显的改善,在金属基材上沉积的DLC薄膜在磨耗过程中被完全磨穿而没有发生剥离.实验显示,在自制的化学气相沉积RF-DCCVD装置上沉积的DLC薄膜的最大沉积厚度是3.3μm;在1μm厚度的薄膜上施加2.94 N的负荷(点载荷),其疲劳破坏寿命达到了70万循环;DLC薄膜与SiC,Si3N4,SUS304和SUJ2材料之间的摩擦系数为0.1~0.15.得到的结果验证了薄膜与金属间的结合强度和摩擦特性能够满足精密机械零件的使用要求.  相似文献   

7.
TiNi表面磁控溅射DLC薄膜的纳米压痕与摩擦性能   总被引:1,自引:0,他引:1  
采用室温磁控溅射技术在TiNi合金表面制备出DLC/SiC(类金刚石/碳化硅)双层薄膜(SiC为中间层),采用拉曼光谱仪、纳米压痕仪和球-盘式摩擦磨损仪研究DLC薄膜的结构、纳米压痕和摩擦性能.结果表明:制备的DLC/SiC薄膜石墨含量高、纳米硬度(5.493 GPa)低、弹性模量(62.2447 GPa)低.在以氮化硅球(半径为2mm)为对摩件,4.9N载荷、室温、Kokubo人体模拟体液润滑下,该DLC/SiC薄膜具有低且稳定的摩擦因数,其平均值约为0.094.  相似文献   

8.
元素掺杂是提升DLC薄膜摩擦学性能和耐温性能的重要途径。采用直流磁控溅射技术在304不锈钢基体表面沉积了含氢DLC薄膜,同时利用射频磁控溅射技术完成Cr元素的掺杂,研究Cr元素掺杂对DLC薄膜的力学性能及摩擦学性能的影响。采用纳米压痕仪测试薄膜硬度并利用划痕试验测试膜基结合力,采用拉曼光谱分析薄膜sp2和sp3键含量的变化和转移膜的生成。采用UMT多功能摩擦磨损试验机评价薄膜在常温和高温环境下的摩擦磨损性能,并利用扫描电镜观察磨损表面,分析其磨损机制。结果表明,Cr元素掺杂会显著提高薄膜的膜基结合力,但会使薄膜硬度有一定的下降。常温摩擦学性能测试显示,DLC薄膜的摩擦因数随着Cr含量的增加呈现出先下降后上升的趋势,在Cr质量分数为3.34%时达到最低;但薄膜的磨损率随Cr含量的增加略有升高。高温摩擦学性能测试表明,Cr元素掺杂显著改善了DLC薄膜的高温摩擦学性能,未掺杂的DLC在150℃以上摩擦时会失效,Cr元素掺杂使薄膜在250℃下也能保持较低的摩擦因数和较长的抗磨寿命。Cr元素的加入能够提高DLC薄膜的膜基结合力,降低摩擦因数,并提高薄膜...  相似文献   

9.
类金刚石薄膜水润滑摩擦学特性研究进展   总被引:1,自引:0,他引:1  
综述类金刚石薄膜水润滑摩擦学特性的研究进展,评述薄膜在水环境中的摩擦磨损特性,分析薄膜种类、元素掺杂、对摩材料以及微结构对DLC薄膜水润滑摩擦学特性的影响,并阐述DLC薄膜在水中的摩擦磨损机制。指出:DLC薄膜水润滑摩擦学特性受薄膜制备参数和摩擦试验环境影响,通过与微结构的耦合可以进一步改善类金刚石薄膜的摩擦学特性。同时还展望了类金刚石薄膜水润滑摩擦学未来研究方向。  相似文献   

10.
碳基薄膜水润滑性能的研究进展   总被引:3,自引:2,他引:3  
评述了碳基薄膜如类金刚石薄膜(DLC)和非晶氮化碳(a-CNx)薄膜水润滑的研究现状和进展。分析了第2元素加入和摩擦副材料对碳基薄膜在水中摩擦磨损特性的影响,探讨了碳基薄膜在水中的磨损机制。指出:氢化或氮化碳基薄膜的磨损率与摩擦副材料的水合反应有关,若摩擦副材料易于摩擦水合反应,碳基薄膜的磨损率很低;3种DLC薄膜在水中的磨损率与DLC的种类和对磨钢球材料无关,都在10-8mm3/(N.m)的数量级上变动;a-CNx/Si基非氧化物陶瓷摩擦副显示很低的摩擦因数和低的磨损率;在相同条件下,a-CNx薄膜比a-C薄膜更能显示优异的水润滑性能。  相似文献   

11.
在中国国家自然科学基金重大项目《先进电子制造中的重要科学技术问题研究》资助下,针对2nm厚度的DLC薄膜的制备和磁头、磁盘间的吸附等问题,探索“磁头、磁盘表面润滑规律和超薄保护膜的生长机理及技术”,目标是寻找磁头、磁盘表面超薄DLC薄膜新的制备方法和制备工艺,发现超薄DLC保护膜的生长机理和生长极限,开发磁头表面抗吸附分子膜的制备技术。报告研究所取得的体系化理论成果。 为了制备厚度为2nm的超薄DLC薄膜,使用FCVA技术代替磁控溅射和CVD技术。通过优化制备参数,制备出厚度为2nm,表面粗糙度为0.128nm,并且连续均匀的DLC薄膜。探索基体形貌对薄膜生长模式的影响规律。发现在脉冲偏压幅值-100V、占空比20%条件下制备的薄膜性能最优  相似文献   

12.
李楠  车银辉  李洋 《润滑与密封》2022,47(8):141-149
大缸径、长冲程的大功率柴油机的活塞环-缸套摩擦副易发生异常磨损,使柴油机动力性能丧失,甚至发生拉缸等重大事故,通过先进的表面处理技术可显著改善活塞环-缸套摩擦副的润滑条件,提高活塞环-缸套摩擦副的摩擦学性能。采用阴极电弧离子镀技术在铬-陶瓷复合镀(CKS)活塞环表面制备厚度为7 μm的DLC薄膜,研究CKS活塞环表面的DLC薄膜在柴油机模拟工况下的摩擦学性能。结果表明:在干摩擦、室温贫油和高温贫油的工况下,CKS活塞环表面的DLC薄膜可以显著减小活塞环-缸套摩擦副对摩的摩擦因数,降低缸套的磨损;摩擦过程中DLC薄膜与润滑油的协同润滑作用以及DLC薄膜的石墨化是改善活塞环-缸套摩擦副摩擦学性能的主要原因。  相似文献   

13.
为了提高DLC(Diamond-like Carbon)类金刚石薄膜与SAE1060碳素钢基材的结合强度,以延长发动机活塞环的使用寿命,研制了一种带有复合阳极的RF-DCCVD双电源化学气相沉积设备。利用锯齿结构的辅助阳极产生尖端放电,制备了具有微米类陨石坑非连续结构的DLC薄膜,并利用Ball-on-Disk摩擦评价试验机评价了薄膜的摩擦特性。着重研究了极间距S -T对薄膜表面类陨石坑密度的影响;最后利用拉曼光谱仪分析了薄膜结构和成分。结果表明:在同样的电压下,类陨石坑的密度随着电极间距的增加而减小,最佳电极间距S -T为40~60 mm,此时不仅具有比较适中的类陨石坑密度,对DLC薄膜的摩擦特性影响不大,而且具有较强的界面结合强度。当S-T为50 mm,施加载荷为3 N时,薄膜的破坏寿命达到了130万循环,比光滑表面的薄膜延长了30万循环。得到的结果显示微米类陨石坑非连续结构能够有效地释放膜内的残余压缩应力,延长SAE1060碳素钢基材上沉积类金刚石薄膜的使用寿命。  相似文献   

14.
DLC薄膜的表面形貌及其摩擦学性能研究   总被引:4,自引:2,他引:4  
以真空蒸发碳离子束辅助镀膜法制备了DLC薄膜,通过原子力显微镜(AFM)和扫描电子显微镜(SEM)观察了该薄膜的表面形貌,对该薄膜的表面形貌对其摩擦学行为的影响进行了研究。研究发现:用真空蒸发碳离子束辅助镀膜的方法制备的类金刚石薄膜表面光滑,颗粒均匀,粒度小,摩擦因数降低;DLC薄膜比弹簧钢片及Ti6Al4V球基体耐磨;DLC薄膜的摩擦学性能在摩擦过程中会进一步改善。  相似文献   

15.
利用摩擦力显微镜(FFM),对由等离子体增强化学气相法沉积的类金刚石(DLC)薄膜的纳米摩擦性能进行了试验研究。用原子力显微镜(AFM)观察了DLC薄膜样品的表面形貌,同时测定了其粘附力值。从外加载荷、扫描速度和湿度的角度分析了薄膜的摩擦特性。  相似文献   

16.
以石墨为电极,Ar气为辅助气体,利用空心阴极等离子体放电在载玻片上成功地制备了无氢类金刚石(DLC,diamond-likecarbon)薄膜。通过激光拉曼(Raman)光谱分析了所制备DLC薄膜的结构;利用扫描电子显微镜(SEM)和原子力显微镜(AFM)分析了薄膜的表面形貌;通过表面轮廓仪测量了薄膜的沉积速率;另外,试验中还利用摩擦磨损仪对薄膜的机械性能进行了研究。试验结果表明,制备的DLC薄膜比较致密均匀,粗糙度为8.1nm,有较好的耐磨性能。  相似文献   

17.
利用射频等离子体增强化学气相沉积技术,以甲烷为气源,在单晶硅(P(001))衬底上制备类金刚石碳基薄膜(DLC);利用高速往复摩擦磨损试验机分别测试DLC薄膜/Al2O3球摩擦副在大气环境下和1-乙基-3-甲基咪唑四氟硼酸盐离子液润滑下的摩擦磨损性能;利用光学显微镜,X射线光电子能谱和三维轮廓仪分别对磨痕、磨痕表面元素和磨损率进行考察。实验结果表明:DLC薄膜在离子液润滑时,在低载荷下减摩作用明显,但在较高载荷下摩擦因数较无离子液润滑时高,且不随载荷增加而变化,推测是离子液形成了边界润滑膜;XPS分析表明这层边界润滑膜可能是由离子液物理吸附在摩擦接触面上形成的,并且对DLC薄膜有很强的抗磨作用。  相似文献   

18.
采用大气压介质阻挡放电等离子体枪,在低温下(350℃),以甲烷为单体,氩气为工作气体,在金属密封环表面制备一层附着牢固的类金刚石薄膜(DLC),以期改善其表面耐磨性能。利用激光拉曼(Raman)光谱分析所制备DLC薄膜的结构;利用原子力显微镜(AFM)分析其表面形貌;利用划痕仪测量其与基体的结合力;用扫描电子显微镜(SEM)观察其划痕形貌;并利用球-盘摩擦磨损实验仪考察其耐磨性能。结果表明:在本实验工艺条件下沉积的类金刚石薄膜厚度约为500nm,薄膜均匀且致密,表面粗糙度为Ra5~6nm,其与基体结合力达到49N;制备的DLC薄膜具有优良的减摩性,其摩擦因数为0.148,较基体20CrNiMo的摩擦因数0.65明显减小,且耐磨性能得到提高。  相似文献   

19.
采用中频非平衡磁控溅射技术制备Ti掺杂DLC(Ti-DLC)薄膜,对该薄膜的结构、内应力、结合强度进行了分析,分析了该薄膜与不同材料(Si3N4、钢、Ti-DLC)对摩时的摩擦磨损性能.结果表明,该方法沉积的DLC薄膜具有结构致密、内应力低、结合强度较高等特点;Ti-DLC的摩擦磨损性能与对偶材料有关,Ti-DLC与Si3N4对摩时摩擦因数最低,磨损率最高;Ti-DLC与钢对摩时摩擦因数最高,且伴随明显波动;Ti-DLC与Ti-DLC对摩时磨损率最低,达到10-8量级.  相似文献   

20.
利用脉冲真空弧源沉积技术在Cr17Ni14Cu4不锈钢和Si(100)基体上制备了类金刚石(DLC)薄膜,研究了基体沉积温度对DLC薄膜的性能和结构的影响。研究表明,随着沉积温度由100 ℃提高到400 ℃,DLC薄膜中sp3 键质量分数减少,sp2键质量分数增多,薄膜复合硬度逐渐降低。当DLC薄膜沉积温度达到400 ℃时,薄膜中C原子主要以sp2键形式存在,与沉积温度为100 ℃时制备的DLC薄膜相比,薄膜复合硬度降低50%。DLC薄膜具有优异的耐磨性,摩擦因数低,随着沉积温度由100 ℃提高到400 ℃,Cr17Ni14Cu4不锈钢表面沉积的DLC薄膜耐磨性降低。沉积温度为100 ℃时,Cr17Ni14Cu4不锈钢表面沉积的DLC薄膜后,耐磨性大幅度提高。DLC薄膜与不锈钢基体结合牢固。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号