首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the effect of equivalence ratio and turbulence intensity on the combustion characteristics of syngas/air mixtures, experiments involving premixed combustion of 70% H2/30% CO/air mixtures at various equivalence ratios and turbulence intensities were conducted in a turbulent combustion bomb at atmospheric temperature and pressure. The turbulent burning velocity and flame curvature were used to study turbulent combustion characteristics. The results show that the turbulent burning velocity grew nonlinearly as the equivalence ratio increased, while the normalized turbulent burning velocity tended to decrease. When the equivalence ratio was relatively low, the turbulence intensity was a greater determinant of the burning velocity. The normalized turbulent burning velocity increased as the turbulence intensity increased. Re and Da were found to be directly and inversely proportional to u’/uL, respectively. A linear relationship was observed between uT/uL and ln Re. As the turbulence intensity increased or equivalence ratio decreased, the wrinkle degree of the flame front increased, and the maximum and minimum values of flame front curvature increased and decreased, respectively. Meanwhile, the range of the flame front curvature increased gradually. The proportion of components with smaller absolute value of flame front curvature gradually decreases.  相似文献   

2.
The aerodynamic characteristics and thermal structure of uncontrolled and controlled swirling double-concentric jet flames at low Reynolds numbers are experimentally studied. The swirl and Reynolds numbers are lower than 0.6 and 2000, respectively. The flow characteristics are diagnosed by the laser-light-sheet-assisted Mie scattering flow visualization method and particle image velocimetry (PIV). The thermal structure is measured by a fine-wire thermocouple. The flame shapes, combined images of flame and flow, velocity vector maps, streamline patterns, velocity and turbulence distributions, flame lengths, and temperature distributions are discussed. The flow patterns of the no-control case exhibit an open-top, single-ring vortex sitting on the blockage disc with a jetlike swirling flow evolving from the central disc face toward the downstream area. The rotation direction and size of the near-disc vortex, as well as the flow properties, change in different ranges of annulus swirl number and therefore induce three characteristic flame modes: weak swirling flame, lifted flame, and turbulent reattached flame. Because the near-disc vortex is open-top, the radial dispersion of the fuel-jet fluids is not significantly enhanced by the annulus swirling flow. The flows of the reacting swirling double-concentric jets at such low swirl and Reynolds numbers therefore present characteristics of diffusion jet flames. In the controlled case, the axial momentum of the central fuel jet is deflected radially by a control disc placed above the blockage disc. This arrangement can induce a large near-disc recirculation bubble and high turbulence intensities. The enhanced mixing hence tremendously shortens the flame length and enlarges the flame width.  相似文献   

3.
Flame front structure of turbulent premixed CH4/H2/air flames at various hydrogen fractions was investigated with OH-PLIF technique. A nozzle-type burner was used to achieve the stabilized turbulent premixed flames. Hot-wire anemometer measurement and OH-PLIF observation were performed to measure the turbulent flow and detect the instantaneous flame front structure, respectively. The hydrogen fractions of 0%, 5%, 10% and 20% were studied. Results show that the flame front structures of the turbulent premixed flames are wrinkled flame front with small scale convex and concave structures compared to that of the laminar-flame front. The wrinkle intensity of flame front is promoted with the increase of turbulence intensity as well as hydrogen fraction. Hydrogen addition promotes the flame intrinsic instability which leads to the active response of laminar flame to turbulence and results in the much more wrinkled flame front structure. The value of ST/SL increases monotonically with the increase of u′/SL and hydrogen fraction. The increase of ST/SL with the increase of hydrogen fraction is mainly attributed to the diffusive-thermal instability effects represented by the effective Lewis number, Leeff. A general correlation between ST/SL and u′/SL is provided from the experimental data fitting in the form of ST/SL ∝ a(u′/SL)n, and the exponent, n, gives the constant value of 0.35 for all conditions and at various hydrogen fractions.  相似文献   

4.
Numerical and asymptotic methods are used to investigate the structure of the hydrogen jet discharging into a quiescent air atmosphere. The analysis accounts in particular for the variation of the density and transport properties with composition. The Reynolds number of the flow Rj, based on the initial jet radius a, the density ρj and viscosity μj of the jet and the characteristic jet velocity uj, is assumed to take moderately large values, so that the jet remains slender and stable, and can be correspondingly described by numerical integration of the continuity, momentum and species conservation equations written in the boundary-layer approximation. The solution for the velocity and composition in the jet development region of planar and round jets, corresponding to streamwise distances of order Rja, is computed numerically, along with the solutions that emerge both in the near field and in the far field. The small value of the hydrogen-to-air molecular weight ratio is used to simplify the solution by considering the asymptotic limit of vanishing jet density. The development provides at leading-order explicit analytical expressions for the far-field velocity and hydrogen mass fraction that describe accurately the hydrogen jet near the axis. The information provided can be useful in particular to characterize hydrogen discharge processes from holes and cracks.  相似文献   

5.
The active control of oxy-fuel flames from burners with separated jets is investigated. The control system consists of four small jet actuators, placed tangential to the exit of the main jets to generate a swirling flow. These actuators are able to modify the flow structure and to act on mixing between the reactants and consequently on the flame behavior. The burner (25 kW) is composed of separated jets, one jet of natural gas and one or two jets of pure oxygen. Experiments are conducted with three burner configurations, according to the number of jets, the jet exit velocities, and the separation distance between the jets. OH chemiluminescence measurements, particle image velocimetry, and measurements of NOx emissions are used to characterize the flow and the flame structure. Results show that the small jet actuators have a significant influence on the behavior of jets and the flame characteristics, particularly in the stabilization zone. It is shown that the control leads to a decrease in lift-off heights and to better stability of the flame. The use of jet actuators induces high jet spreading and an increase in turbulence intensity, which improves the mixing between the reactants and the surrounding fluid. Pollutant measurements show important results in terms of NOx reductions (up to 60%), in particular for low swirl intensity. The burner parameters, such as the number of jets and the spacing between the jets, also impact the flame behavior and NOx formation.  相似文献   

6.
Response of bluff-body stabilized conical turbulent premixed flames was experimentally studied for a range of excitation frequencies (10-400 Hz), mean flow velocities (5, 10 and 15 m/s) and three different spatial mixture distributions (uniform, inner and outer enrichment). Upstream excitation was provided by a loudspeaker producing velocity oscillation amplitudes of about 8% of the mean flow velocity. Flame response was detected by a photomultiplier observing the CH emission from the flame. The studied turbulent flames exhibited transfer function characteristics of a low-pass filter with a cutoff Strouhal number between 0.08 and 0.12. The amplification factors at low frequencies ranged from 2 to 20 and generally increased for mean flow velocities from 5 to 15 m/s. The highest levels of amplification were found for the outer mixture enrichment followed in decreasing order by uniform and inner mixture gradient cases. The high levels of flame response for the outer enrichment case were attributed to the enhanced flame-vortex interaction in outer jet shear layer. At high excitation levels (u/Um≈0.3) for where non-linear flame response is expected, the flame exhibited a reduced amplitude response in the frequency range between 40 and 100 Hz for the uniform and outer equivalence ratio gradient cases and no discernible effect for the inner equivalence ratio gradient. In all cases, transfer function phase was found to vary linearly with excitation frequency. Finally, a relationship between the amplitude characteristics of the bluff-body wake transfer function and flame blowoff equivalence ratio was presented.  相似文献   

7.
To study the effects of different diluents on the propagation characteristics of H2/CO/air mixture turbulent premixed flames, a series of experiments were carried out in a turbulent premixed flame experimental system. The effects of turbulence intensity (0.49–1.31 m/s), dilution gas content (10%, 20%, and 30%), hydrogen fraction (50%, 70%, and 90%), and equivalence ratio (0.6, 0.8, and 1.0) on the turbulent premixed flame were studied. The results show that with the increase in hydrogen fraction or turbulence intensity or equivalence ratio, the ST and ut increase at the same radius. Compared with N2 dilution, CO2 dilution showed a more obvious inhibition effect on ST. With the increase of Ka, ST;35mm/u’ gradually decreased, and the extent of ST;35mm/u’ decrease gradually became smaller. As the intensity of turbulence increases or the hydrogen fraction increases, the slope of ST,35mm/u’ with Da/Le gradually decreases. In the turbulence intensity range of this experiment, the ut,35mm/μl under nitrogen dilution condition has a larger floating range. The growth rate of ut,35mm/μl at a low equivalence ratio is significantly higher than that at a high equivalence ratio.  相似文献   

8.
A combination of PIV/OH laser induced fluorescence technique is used to measure the conditional - burned and unburned - gas velocity in a turbulent premixed CH4/air annular bluff-body stabilized burner. By changing the equivalence ratio from lean to almost stoichiometric, the energy budget of the recirculating region anchoring the flame is altered in such a way to increasingly lift the flame away from the jet exit. The overall turbulence intensity interacting with each flame is thus systematically varied in a significant range, allowing for a parametric study of its effect on turbulent scalar transport under well controlled conditions, always well within the flamelet regime. The component of the flux normal to the average front is found to reverse its direction, confirming the Bray number as a good indicator of gradient/counter-gradient behavior, once the actual incoming turbulence level felt locally by the flame is assumed as the proper control parameter.  相似文献   

9.
10.
The effects of property variations in single-phase laminar forced micro-convection with constant wall heat flux boundary condition are investigated in this work. The fully-developed flow through micro-sized circular (axisymmetric) geometry is numerically studied using two-dimensional continuum-based conservation equations. The non-dimensional governing equations show significance of momentum transport in radial direction due to μ(T) variation and energy transport by fluid conduction due to k(T) variation. For the case of heated air, variation in Cp(T) and k(T) causes increase in Nu. This is owing to: (i) reduction in Tw, (Tw ? Tm), and (?T/?r)w and (ii) change in ?Tm/?z results in axial conduction along the flow. The effects of ρ(p,T) and μ(T) variation on convective-flow are indirect and lead to: (i) induce radial velocity which alters u(r) profile significantly and (ii) change in (?u/?r)w along the flow. It is proposed that the deviation in convection with Cp(T), k(T) variation is significant through temperature field than ρ(p,T), μ(T) variation on velocity field. It is noted that Nu due to variation in properties differ from invariant properties (Nu = 48/11) for low subsonic flow.  相似文献   

11.
In this article, conditional moment closure model (CMC) with detailed chemistry is used to model lifted turbulent methane flame in a high temperature and vitiated coflow and to predict flame lift-off height. The flow and mixing field are predicted by a 2D in-house code employing a k–ε turbulence model (RANS) with modified constant Cε2. The first-order CMC model on its own could not capture the behavior of the lifted flame. Large eddy simulations (LES) coupled with second-order CMC model would be a promising alternative but the objective here was to improve low-cost simulations based on RANS and first-order CMC to address realistic problems. Hence, an extinction model has been incorporated in the first-order CMC to improve its predictions and is referred in this paper as CMCE. In the CMCE model, flame is assumed to be extinguished when the ratio of flow time scale to the chemical time scale falls below a critical value. Predicted lift-off height by the CMCE model agrees very well with the experimental results. There is a significant improvement in temperature and species distributions in both axial and radial directions with the implementation of the CMCE model. Further, the model is extended to predict the flame lift-off height for various coflow temperatures and jet velocities by using scaling ratios. With these modifications, the lift-off heights predicted by the CMCE model match well with the experimental results for a wide range of jet velocities and coflow temperatures. Results from both CMC and CMCE models are compared against the experimental data to show the importance of the extinction model. Flame stabilization process indicates that flame stabilizes on the contour of mean stoichiometric mixture fraction where axial mean velocity equals the turbulent burning velocity.  相似文献   

12.
Analytical and numerical solutions are established for momentum and energy laminar boundary layer induced by a shock wave. The results indicated that skin friction σ decreases with increasing in velocity ratio ξ(1≤ξ< 6). For each specified ξ(1≤ξ< 6), temperature w(t) increases with increasing of Tw but decreases with Te , and for a range of t ∈[1,ξ], w(t) decreases with the increasing of t. Thermal diffusion increases with increasing of uw but decreases with increasing Ue.  相似文献   

13.
Recent discoveries and developments on the dynamic process of premixed turbulent spark ignition are reviewed. The focus here is on the variation of turbulent minimum ignition energies (MIET) against laminar MIE (MIEL) over a wide range of r.m.s. turbulence fluctuation velocity (uʹ) alongside effects of the spark gap between electrodes, Lewis number, and some other parameters on MIE. Two distinguishable spark ignition transitions are discussed. (1) A monotonic MIE transition, where MIEL sets the lower bound, marks a critical uʹc between linear and exponential increase in MIET with uʹ increased. (2) A non-monotonic MIE transition, where the lower bound is to be set by a MIET at some uʹc, stems from a great influence of Lewis number and spark gap despite turbulence. At sufficiently large Lewis number >> 1 and small spark gap (typically less than 1 mm), turbulence facilitated ignition (TFI), where MIET < MIEL, occurs; then MIET increases rapidly at larger uʹ > uʹc because turbulence re-asserts its dominating role. Both phenomena are explained by the coupling effects of differential diffusion, heat losses to electrodes, and turbulence on the spark kernel. In particular, the ratio of small-scale turbulence diffusivity to reaction zone thermal diffusivity, a reaction zone Péclet number, captures the similarity of monotonic MIE transition, regardless of different ignition sources (conventional electrodes versus laser), turbulent flows, pressure, and fuel types. Furthermore, TFI does and/or does not occur when conventional spark is replaced by nanosecond-repetitively-pulsed-discharge and/or laser spark. The latter is attributed to the third lobe formation of laser kernel with some negative curvature segments that enhance reaction rate through differential diffusion, where MIEL < MIET (no TFI). Finally, the implications of MIE transitions relevant to lean-burn spark ignition engines are briefly mentioned, and future studies are suggested.  相似文献   

14.
This study reports a numerical investigation on the linear-elastic KI and T-stress values over the front of elliptical cracks axially embedded in the wall of a pipe/cylindrical structure, under a uniform pressure applied on the inner surface of the pipe. The numerical procedure employs an interaction integral approach to compute the linear-elastic stress intensity factor (SIF) KI and T-stress values from very detailed crack-front meshes. The verification study confirms the accuracy of the adopted numerical procedure in computing the KI values based on existing results for external axial surface cracks in the wall of a cylindrical structure. The parametric investigation covers a wide range of geometric parameters including: the wall thickness to the inner radius ratio of the pipe (t/Ri), the crack depth over the wall thickness ratio (a/t), the crack aspect ratio (a/c) and the crack location measured by the ratio of the distance from the centerline of the crack to the outer surface of the pipe over the pipe wall thickness (eM/t). Subsequent efforts develop, from a nonlinear curve-fitting procedure, a new set of equations to estimate the T-stress and KI values at three critical front locations of the axial elliptical cracks: the crack-front point O nearest to the outer surface of the pipe, the crack-front point I nearest to the inner surface of the pipe and the crack-front point M on the centerline of the axial crack. These equations combine a second-order polynomial with a power-law expression to predict the pronounced variations in the T-stress and KI values with respect to the geometric parameters. The coefficients of the new KI and T-stress equations either take a constant value or incorporate the linear variation with respect to the pipe wall thickness over the inner radius ratio, t/Ri. The proposed equations demonstrate a close agreement with the finite element (FE) results, which indicate very strong dependence of the T-stress and KI values at point O and point I on the corresponding ligament lengths, eO and eI.  相似文献   

15.
Using a double-chamber explosion facility, we measure high-pressure turbulent burning velocities (ST) of lean syngas (35%H2/65%CO) spherical flames at constant turbulent Reynolds numbers (ReT ≡ uLI/ν) varying from 6700 to 14,200, where the root-mean-square turbulent fluctuation velocity (u′) and the integral length scale (LI) are adjusted in proportion to the decreasing kinematic viscosity of reactants (ν) at elevated pressure (p) up to 1.2 MPa. Results show that, contrary to popular scenario for turbulent flames, at constant ReT, ST decreases similarly as laminar burning velocities (SL) with increasing p in minus exponential manners. Moreover, at constant p, ST/SL increases noticeably with increasing ReT. It is found that the present very scattering ST/SL data at different p and ReT can be nicely merged onto a relation of ST/u′ = 0.49Da0.25, where Da is the turbulent Damköhler number and values of ST/u′ tends to level-off when Da > 160 and p > 0.7 MPa.  相似文献   

16.
In this paper, a simplified porous medium thermoacoustic system is modeled to observe its energy interaction characteristics and identify its operating conditions mainly as a function of porous medium Darcy number. The governing Darcy–Brinkman momentum equation and energy equation are simplified and linearized by using a first order perturbation analysis. Similar perturbation analysis is usually used to solve the linear thermoacoustic problem in the low Mach number limit. Simplified momentum and energy equations are solved, in the frequency domain, in order to obtain the expressions of the fluctuating velocity (u1) and temperature (T1). Time averaged and space averaged heat fluxes and work fluxes are calculated using the expressions of fluctuating velocity and temperature. The effects of the drive ratio (DR), Darcy number (Daδ), temperature gradient (?Tm), and frequency (f) on the heat flux, work flux, and operating conditions are discussed and graphically presented.  相似文献   

17.
Experiments on flame propagation regimes in a turbulent hydrogen jet with velocity and hydrogen concentration gradients have been performed. Horizontal stationary hydrogen jets released at normal and cryogenic temperatures of 290, 80 and 35 K with different nozzle diameters and mass flow rates have been investigated. Sampling probe method and laser PIV techniques have been used to evaluate the distribution of hydrogen concentration and flow velocity. High-speed photography combined with a Background Oriented Schlieren (BOS) system was used for the visual observation of the turbulent flame propagation. In order to investigate different flame propagation regimes the ignition position was changed along the jet axis. It was found that the flame propagates in both directions, up- and downstream of the jet flow if hydrogen concentration is >11%, whereas in case [H2] < 11%, the flame propagates only downstream. This means that at normal temperature the flame is able to accelerate effectively only if the expansion ratio σ of the H2-air mixture is higher than a critical value σ* = 3.75 defined for a closed geometry.  相似文献   

18.
We report an algorithm for real-time control of the fuel of a DMFC. The MEA voltage decay coefficients [e1, e2], and I-V-T, M′-I-T, and W′-I-T curves (where I is the current, V the voltage, T the temperature, and M′ and W′ the methanol and water consumption rates, respectively) of n fuels with specified methanol concentrations CM,k (k = 1, 2,…, n) are pre-established and form (I,V,T), (M′,I,T), and (W′,I,T) surfaces for each CM,k. The in situ measured (I,V,T)u after voltage decay correction is applied to the n preset (I,V,T) surfaces to estimate CM,u (the CM corresponding to (I,V,T)u) using an interpolation procedure. The CM,u is then applied to the n preset (M′,I,T) and (W′,I,T) surfaces to estimate cumulated “methanol” and “water” consumed quantities . Thus in a real-time system, the CM and total quantity of fuel can be controlled using the estimated CM,u and cumulated “methanol” and “water” consumed quantities.  相似文献   

19.
This paper measures high-pressure turbulent burning velocities (ST) of lean methane spherical flames at constant turbulent Reynolds numbers (ReT  uLI/ν), where u′ and LI are the r.m.s. turbulent fluctuation velocity and the integral length scale of turbulence and ν is the kinematic viscosity of reactants. This is achieved by adopting a recently-built double-chamber, fan-stirred cruciform burner with perforated plates that can be used to generate intense near-isotropic turbulence with negligible mean velocities while controlling the product of uLI in proportion to the decreasing ν at elevated pressure (p) up to 1.2 MPa. Results show that when ReT is fixed ranging from 6700 to 14,200, values of ST decrease similarly as laminar burning velocities (SL) with increasing p in minus exponential manners, revealing a global response of burning velocities to pressure. In general, the higher ReT, the higher ST/SL at any fixed p. It is found that the curves of ST/SL as a function of u′/SL all exhibit very strong bending under constant ReT conditions. These results not only reveal that the important effect of ReT on high-pressure ST/SL enhancement, but also suggest that recent findings related with the promotion effect of increasing pressure on ST primarily due to the enhancement of flame instabilities via the thinner flame without any discussion on the influence of ReT elevation at elevated pressure should be reconsidered. Moreover, we found that the modified values of ST at mean progress variable c¯  0.5 show good agreements between Bunsen-type and spherical flames, suggesting that ST determined at flame surfaces with c¯ = 0.5 may be a better representative of itself regardless of the flame geometries. Finally, various general correlations of ST,c¯=0.5 are compared and discussed. It is found that the present scattering data under different p and ReT conditions can be merged onto a single curve of (ST,c¯=0.5 ? SL)/u = 0.14Da0.47, where Da is the turbulent Damköhler number.  相似文献   

20.
The effect of swirl flow on pollutant emission (nitrous oxide) was studied in a non-premixed turbulent hydrogen jet with coaxial air. A swirl vane was equipped in a coaxial air feeding line and the angle of the swirl vane was varied from 30 to 90 degrees. Under a fixed global equivalence ratio of φG = 0.5, fuel jet air velocity and coaxial air velocity were varied in an attached flame region as uF = 85.7–160.2 m/s and uA = 7.4–14.4 m/s. In the present study, two mixing variables of coaxial air and swirl flow were considered: the flame residence time and global strain rate. The objective of the current study was to analyze the flame length behavior, and the characteristics of nitrous oxide emissions under a swirl flow conditions, and to suggest a new parameter for EINOx (the emission index of nitrous oxide) scaling. From the experimental results, EINOx decreased with the swirl vane angle and increased with the flame length (L). We found the scaling variables for the flame length and EINOx using the effective diameter (dF,eff) in a far-field concept. Normalized flame length (L divided by dF,eff) fitted well with the theoretical expectations. EINOx increased in proportion to the flame residence time (∼τR1/2.8) and the global strain rate (∼SG1/2.8).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号