首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《能源学会志》2020,93(6):2264-2270
The contents of chlorine and sodium in Xinjiang Shaerhu (SEH) coal are extremely high, leading to severe slagging. In this paper, the slag was sampled from a circulating fluidized bed (CFB) boiler purely burning SEH coal, to analyze the slagging mechanism based on the characterization of morphology and composition. The results show a three-layer structure for the slag sampled from the buried heat-exchanger in the dense-phase zone of the CFB boiler. The inner layer close to the heat-exchanger is NaCl, which enhances the adhesion of ash particles, while the middle layer and the outer layer are mainly composed of Ca2Al2SiO7 and other Si–Al materials. In comparison, the slag sampled from the refractory wall shows a molten state without a layered structure and mainly composed of NaCl, NaAlSiO4, Ca2Al2SiO7, and CaSiO3. The effect of mixing bed material, on the ash melting and release of chlorine and sodium was further conducted, which indicates that the mixing of bed material has no significant effect on the release of chlorine(Cl) and sodium(Na) but highly affects the melting temperature and compositions. The ash fusion temperature reaches the lowest with a 50% mixing ratio of bed material, which is 120 °C lower than that of SEH coal ash. This study can provide better guidance for controlling severe slagging, from the combustion of high Na and Cl coal in industrial furnaces.  相似文献   

2.
Mineral behaviour for two individual coals (I, J) and their two‐component coal blends and 800°C ash blends heating were studied. Ash samples were heated progressively from 800°C to IT (initial deformation temperature) at 100°C intervals under different conditions. Coal samples were heated from room temperature to the corresponding temperature. Mineral transformation at each temperature was determined by X‐ray diffraction and SEM measurements. The results show that Si, Al, Fe and Ca compounds have a great form variation during heating. Their forms at different temperatures depend on the chemical composition of the ash, the blending ratio and the atmosphere. For different coal ashes, the main mineral matters at 800°C were quartz, anhydrite, hematite, calcite and feldspar. As the temperature increased, oxidation, thermal decomposition, transformation and reaction occurred between the components. Comparing a 40% I+60% J ash blend with individual ashes, fayalite was formed at 1100°C for the blend; the reaction product existed in a glassy phase at 1300°C. For a coal blend having the same ash ratio as the ash blend, FeO reacted with amorphous SiO2 or Al2O3 to form fayalite and hercynite at 1000°C. As the temperature increased to 1100°C, fayalite and hercynite increased obviously. At 1200°C, some iron inclusion compounds melted to become glassy phase matter. Compared with the ash blend, iron species undergo a different change during coal blend heating: fayalite and hercynite formed earlier, iron compounds melted to form a glassy phase at lower temperature. This may be caused by early combustion of the more reactive coal (J coal) in the blend inducing local variation in oxygen concentration gradients around the less reactive coal and consequently affecting the reaction atmosphere and Fe mineral behaviour and interaction. That is to say, for coal blends, the mineral transformation was affected by both the mineral species interaction and the combustion behaviour. The calculations were performed to examine the fate of mineral matter under different combustion conditions using a thermodynamic chemical equilibrium calculation program. Calculations from coal blends were comparable with experiments from ash blends, this is because the calculation program only considers the interaction among the mineral species but does not consider the combustion reaction. It indicates that combustion and the relative volatiles also affected the mineral behaviour and slagging during coal blend combustion. Meanwhile, the mineral species evaporations were measured at high temperature: the main evaporated species were Na, K pure species and compounds, Fe, FeO, SiO and SiO2. The evaporation of Fe has an important effect on initial deposition. Calculations were comparable with the experiments. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Gasification or combustion of coal and biomass is the most important form of power generation today. However, the use of coal/biomass at high temperatures has an inherent problem related to the ash generated. The formation of ash leads to a problematic phenomenon called slagging. Slagging is the accumulation of molten ash on the walls of the furnace, gasifier, or boiler and is detrimental as it reduces the heat transfer rate, and the combustion/gasification rate of unburnt carbon, causes mechanical failure, high-temperature corrosion and on occasions, superheater explosions. To improve the gasifier/combustor facility, it is very important to understand the key ash properties, slag characteristics, viscosity and critical viscosity temperature. This paper reviews the content, compositions, and melting characteristics of ashes in differently ranked coal and biomass, and discusses the formation mechanism, characteristics, and structure of slag. In particular, this paper focuses on low-rank coal and biomass that have been receiving increased attention recently. Besides, it reviews the available methodologies and formulae for slag viscosity measurement/prediction and summarizes the current limitations and potential applications. Moreover, it discusses the slagging behavior of different ranks of coal and biomass by examining the applicability of the current viscosity measurement methods to these fuels, and the viscosity prediction models and factors that affect the slag viscosity. This review shows that the existing viscosity models and slagging indices can only satisfactorily predict the viscosity and slagging propensity of high-rank coals but cannot predict the slagging propensity and slag viscosity of low-rank coal, and especially biomass ashes, even if they are limited to a particular composition only. Thus, there is a critical need for the development of an index, or a model or even a measurement method, which can predict/measure the slagging propensity and slag viscosity correctly for all low-rank coal and biomass ashes.  相似文献   

4.
《能源学会志》2020,93(2):752-765
Zhundong (ZD) coal from northwest China is a high quality steam coal with reserves of more than 390 billion tons. However, the utilization of ZD coal is limited due to the high content of alkali and alkaline earth metals. This study aimed at revealing the release and transformation mechanism of Na/Ca/S compounds during combustion/gasification of ZD coal. The results demonstrate that Na was primarily influenced by temperature, mostly releases at 600–800 °C. The transformation of Ca compounds was affected by both temperature and atmosphere. The high temperature of the combustion process could accelerate the decomposition of CaCO3 and CaSO4, and the high content of CO2 during gasification prolonged the decomposition of CaCO3. The transformation of S was primarily influenced by atmosphere. SO2 could react with CaO and form CaSO4 during the combustion process. While S compounds were mainly released as S (g) and H2S (g) during gasification process. There was a significant interaction among Na/Ca/S compounds during combustion, original CaSO4 in coal could adsorb Na compounds with SO2 at 600–800 °C and then reacted with aluminosilicates, by this reaction, Na could be fixed above 1000 °C.  相似文献   

5.
The blends of coal ash and straw ash with the proportion of 50%, 30% and 10% were selected for high-temperature slagging experiments under different atmospheres (Air/N2/CO2). The main components of the slags were the mixtures of Si-Al-Ca-O. The straw ash in low proportion was first to melt and then bonded slags. The eutectic reaction of blend ashes were facilitated by increasing the proportion of straw ash, which enhanced the effect of slagging. Slagging in oxygen-containing atmospheres (Air, CO2) was much more serious than that in N2 atmosphere. The formation of iron glass was promoted under air atmosphere, and K, Na, Cl elements in straw ash volatilized significantly while few of them existed in the form of feldspar compounds or sulfates. Mullite in coal ash was consumed and then produced calcium feldspar because of the eutectic reaction with CaO. However, the slagging characteristics were not the same in reducing atmospheres. In CO2 atmosphere, the surface was eroded into gully apertures because of the gasification, and Fe2O3 was reduced to FeO which enhanced slagging. But the effect of N2 atmosphere on the blend ashes was weak. The mineral decomposition and reorganization made the slag present fragmented, while the element Fe was present in the form of Fe2O3 under N2 atmosphere. In this case, the strong polarity of Fe3+ weakened the melting of the slag.  相似文献   

6.
Operational performance of two ton/day coal partial slagging entrained-bed gasifier has been investigated. Coal to syngas conversion under operating temperature (1100–1300 °C), pressure (19.7–20.4 bar) and oxygen to coal ratio of 0.70 produced syngas at a flow rate of 177.5 Nm3/h. Composition of produced syngas was; CO 38–40 vol%, H2 22–23 vol%, CO2 7–8 vol%, and CH4 1.0–1.5 vol%. Carbon conversion and cold gas efficiency after one pass through operation were found to be 92.81% and 73.83% respectively. Fly ash fines produced were high in carbon content and acidic oxides than the bottom slag. Non-metal leaching nature of bottom slag was confirmed with ICP analysis. Based on the results, an industrial symbiosis can be established by recycling and reusing high carbon content fly ash fines in the gasifier. The same can be sold to other industries as a quality energy fuel. Slag produced can be used for the construction of roads and pavements.  相似文献   

7.
The combustion of pulverised coal in power stations results in slagging and fouling in the boiler section and this can be a more severe problem when co-fired with biomass, especially straw. Prediction of the effects of different combination of biomass and coal are helpful to the plant operators. Predictive software gives information about the onset and nature of the slag formed but often the results of these calculations have to be validated. This was undertaken in this work which gave a comparison of ash behaviour for coal (El Cerrejon) and wheat straw blends studied by ash fusion test, X-ray diffraction (XRD) and by using predictive software (FactSage). Ash prepared in the laboratory was also compared with ash produced in a 250 kW pilot-scale test furnace. The FactSage model showed good agreements with XRD data for the presence of inorganic phases with temperature, although it predicted some inorganic phases which are not detected in the XRD, particularly in low temperature ashes. Nevertheless, FactSage gave insight into liquid phase formation, more so than the ash fusion test, since it predicted the beginning of slag formation below the initial deformation temperature seen in the ash fusion test. For the coal, wheat straw and their blends, FactSage always predicted that slag formation is near to completion by the flow temperature observed in the ash fusion test.  相似文献   

8.
Ash fusion characteristics (AFC) affect biomass slagging significantly. Due to the complexity of biomass ash composition, simulated ashes have been used for investigating AFC. Considering the practical ash components used in power plants, the mixture of SiO2, CaO, K2O and Al2O3 were used as simulated ashes. Deformation temperature (DT) changes remarkably as the ash components of biomass change, and thus is selected as an index. The results are presented by SiO2-CaO-K2O ternary diagrams with three different ratios of Al2O3. The ternary diagrams are divided as high-temperature zone (HZ, >1400 °C), medium-temperature zone (MZ, 900–1400 °C) and low-temperature zone (LZ, <900 °C). Results also show that without Al, low melting products (K4CaSi3O9) of the eutectic reactions among K2O, CaO and SiO2 led to a DT of 1290 °C in MZ. With the addition of Al2O3, DT can increase from LZ to MZ at high K content condition because Si-Al-K compounds such as KAlSi2O6 and KAlSi3O8 formed. However, DT decreased and moved from HZ to MZ with the addition of Al while Ca or Si content is high because of Si-Al-Ca compounds such as Ca2Al2SiO7 and CaAl2Si2O8. Besides, the difference (DSD) between deformation temperature and softening temperature has been used to predict the slagging potential. Long slag tends to occur in the zone of high K content, where SiO2 leads to a larger DSD than CaO does. Al2O3 can decrease DSD and form short slag, which is suitable as additive for relieving slagging.  相似文献   

9.
To reduce anthropogenic CO2 emissions from power plants, biomass is an immediate alternative fuel which has similar properties as coal. In this regard, the present study discusses about pelletized wood (PW) co-firing with high ash Indian coal by conducting co-milling and co-firing trials in a 1000 kg/hr of pilot scale test facility. Indian coals are typically high ash content and low calorific value fuels, therefore, its interaction with coal during combustion and ash deposition have studied in detail. Based on co-milling trails of PW and coal, it was observed that as PW proportion in coal increases, the quantity of particles of size below 50 μm and as well above 500 μm were increased. From co-firing studies, it was observed that higher volatile content in PW helping in stabilizing flames while co-firing. At lower proportions, up to 10% weight PW co-firing with coal, the flame temperature and heat flux values are very close to base test of 100% coal firing. However, beyond 10% by weight of PW co-firing with coal, the flame temperature and heat flux values were increased significantly from 100% coal tests. This is because of higher calorific value of PW than coal. The CO emission was decreased with increase in PW proportion in coal but at 30% of PW in coal, CO emission was increased suddenly. However, NO and SO2 concentrations were decreased up to 8% and 16% respectively with increase in PW proportion in coal due to lower fuel nitrogen and sulphur content in PW than coal. Analytical analysis of slagging indices suggest that the slagging potential for PW co-firing with coal is increasing as the PW proportion in coal increases.  相似文献   

10.
To facilitate the large-scale utilization of high-alkali and -alkaline earth metals (AAEMs) coals in power generation, the ash deposition behaviors of a typical Zhundong coal in oxy-fuel combustion were experimentally investigated using a drop tube furnace. A wall-temperature-controlled ash deposition probe by which the bulk gas temperature could be measured simultaneously was designed and employed in the experiments. The deposition tendencies, ash morphologies, chemical compositions of deposited ash particles were studied respectively under various oxygen concentrations, bulk gas temperatures, probe surface temperatures and probe exposure times. The experimental results revealed that the oxygen concentration had a significant influence on the deposition behavior during oxy-fuel combustion of high-alkali coal. Compared with air case, more fine ash particles were generated during the combustion of Zhundong coal in 21% O2/79% CO2 atmosphere but the deposition tendency was weaker. However, a higher oxygen concentration could aggravate the tendency of ash deposition. The high contents of iron (Fe), calcium (Ca), sulfur (S), and sodium (Na) in Zhundong coal could result in the generations of low-melting point compounds. Calcium in flue gas existed as CaO and was captured prior to SO3 by the probe surface during the ash deposition process. At the initial 30 min of the ash deposition process, the dark spherical fine ash particles rich in Fe, Na, oxygen (O), and S were largely produced, while in the range of 60–90 min the light spherical fine ash particles with high contents of Ca, barium (Ba), O, and S were generated on the other hand. The deposition mechanisms at different stages were different and the melted CaO (BaO)/CaSO4 (BaSO4) would give rise to a fast growth rate of ash deposit.  相似文献   

11.
为研究焚烧炉过热器内的飞灰沉积、沾污和结渣的原因及影响因素,在260 t/d炉排-循环床垃圾焚烧炉过热器区域安放结渣实验采样段,利用SEM/EDX、XRF和XRD等方法分析了积灰和渣的成份和形态。研究表明:管束的几何结构对结渣有重要的影响,受热管越细越容易结渣。高温过热器渣层上的颗粒排列紧密,呈砖形,长度约2~5μm,物相组成为CaSO4、石英、SiO2、Ca2SiO4等。垃圾焚烧炉结渣主要是由粘结性颗粒撞击管壁所致。  相似文献   

12.
《能源学会志》2020,93(2):450-462
CHEMKIN software was used to optimize the reaction mechanism of sodium in flue gas to study the influence of targeted design for purely burning Zhundong (ZD) coal on boiler characteristics. Then, the optimized 32-step elemental reaction was combined with CFD software. An eddy-dissipation concept model considering detailed chemical reactions was used to simulate the transformation behavior of sodium-containing substances. The combustion characteristics of the 660 MW face-fired boiler under various loads were also simulated. The field distribution in the furnace and the migration path of sodium along the track of pulverized coal particles were obtained. The results show that the interference between each burner in the furnace is small at the BMCR load, and the phenomenon of “wind wrapping fire” is distinctly clear. The temperature at furnace outlet is approximately 970.98 °C. At a low load, the combustion in the furnace is stable, and the temperature at the furnace outlet reaches the design value. The sodium present in ZD coal is involved in the reaction after it is released in the form of Na and NaCl. Sodium is present in different forms in the main burner zone, mainly NaCl (67%), NaOH (12%), Na (9%), and Na2SO4 (7%). The forms of sodium at the furnace outlet are NaCl (50%), Na2SO4 (37%), Na2Cl2 (9%) and NaHSO4 (4%). A small amount of Na2SO4 is formed by NaHSO4 reaction in the main burner zone. It then reacts to form NaSO4, wherein NaHSO4 is formed by path 2. Na2SO4 is mainly generated in the burnout zone through path 1, and paths 2, 3, and 4 are hardly observed. The findings of this research can provide reference for the design of a purely fired ZD coal boiler and further studies on slagging observed on the heating surface.  相似文献   

13.
The well-documented shortcomings of the standard technique for estimating the fusion temperature of coal ash are its subjective nature and poor accuracy. Alternative measurements based on the shrinkage and electrical conductivity of heating samples are therefore examined with laboratory ash prepared at about 800°C in crucibles, as well as combustion ash sampled from power stations. Sensitive shrikage measurements indicate temperatures of rapid change which correspond to the formation of liquid phases that can be identified on ternary phase diagrams. The existence and extent of formation of these phases, as quantified by the magnitude of “peaks” in the test, provide alternative ash fusion temperatures. The peaks from laboratory ashes and corresponding combustion ashes derived from the same coals show clear differences which may be related to the evaporation of potassium during combustion and the reactions of the mineral residues to form combustion ash. A preliminary evaluation of data from nine power stations indicates that shrinkage measurements can provide an alternative approach to characterizing slagging.  相似文献   

14.
This study aims to demonstrate the effect of ash chemistry, especially, the transformation of potassium (K), chlorine (Cl), and sulfur (S) species, on the fine particle emission during biomass combustion. Biomass was burned in an entrained flow reactor at varied temperature from 1000 to 1300 °C, where fine particles were sampled using a 13-stage low pressure impactor, and the morphology and composition of the fine particles were analyzed. The fates of K, Cl, and S during biomass combustion were compared between the entrained flow reactor and the muffle furnace. Results show that the particle size distributions of PM10 are bimodal for all studied cases. A higher concentration of fine-mode particle is observed at 1000 °C, with the peak position at 0.274 μm. When the temperature is increased from 1000 to 1100 °C or higher, the concentration of fine-mode particle is reduced by about 50%, and its size becomes smaller with a peak position at 0.097 μm. K, Cl and S are enriched as potassium chloride and sulfate, dominantly in PM1.0; while Mg, Ca and Si are enriched in PM1.0–10. A certain amount of sulfur in PM1.0 at 1000 °C is observed, while the sulfur disappears above 1100 °C. This indicates that the process of potassium sulfation tends to occur at a moderate temperature, and affects the emission amount and the particle size distribution of particulate matters. Analyzing results of the fates of K, Cl and S in the particle phase indicate a completed sulfur-release from biomass ash above 1200 °C, as well as a maximum capture efficiency for potassium-containing vapors at 1100 °C, which results in a minimum PM1.0 emission at 1100 °C.  相似文献   

15.
通过对生物质燃料(锯末、玉米秸和麦秸)与煤混燃灰化学成分和熔融温度的测定,利用灰分的碱酸比B/A、硅比G、硅铝比S/A、积灰沾污特性指数Hw、磨损特性指数日。等判别指数对生物质纯燃、与煤混燃时的结渣、积灰和磨损特性进行了研究和分析。结果表明,生物质灰都具有结渣倾向,麦秸灰具有严重的积灰倾向,玉米秸灰和锯末灰有易积灰倾向。生物质灰的磨损倾向都较轻微。随着生物质与煤混燃比例的增加,结渣有加重趋势。灰中酸性氧化物和碱性氧化物的含量会直接影响灰的熔融温度。  相似文献   

16.
Fusion characteristics of ashes from anthracite and biomass (pine sawdust and corn stalk) blends were investigated. These ashes were prepared in a muffle furnace (MF) and a drop tube furnace (DTF) at the temperatures of 815 °C and 1200 °C respectively. The fusion temperatures of ashes were measured in an ash fusion temperature analyzer, the morphological characteristics and element component of ashes were analyzed by means of SEM (Scanning Electron Microscope) fitted with EDS (Energy Disperse Spectroscopy). The minerals species and transformation characteristics were also detected using XRD (X-ray diffraction). The fusion temperatures of MF blends ashes were lower than those of DTF blends ashes because of the difference of ash preparation temperatures. The structures of ashes made in MF were dispersed and loose, but the ashes made in DTF were denser and larger resulting in obvious agglomeration. The fusion temperatures decreased with biomass addition ratio increasing due to large amounts of alkali and alkali-earth species in pine sawdust/corn stalk ash regardless the ash preparation method. K and Ca-bearing compounds can react with aluminosilicates in anthracite to create low temperature eutectics which can decrease the fusion temperatures of anthracite and biomass blends.  相似文献   

17.
Biomass is available from many sources or can be mass-produced. Moreover, biomass has a high energy-generation potential, produces less toxic emissions than some other fuels, is mostly carbon neutrality, and burns easily. Biomass has been widely utilized as a raw material in thermal chemical conversion, replacing coal and oil, including power generation. Biomass firing and co-firing in pulverized coal boilers, fluidized bed boilers, and grate furnaces or stokerfed boilers have been developed around the world because of the worsening environmental problems and developing energy crisis. However, many issues hinder the efficient and clean utilization of biomass in energy applications. They include preparation, firing and co-firing, and ash-related issues during and after combustion. In particular, ash-related issues, including alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, and ash utilization, are among the most challenging problems. The current review provides a summary of knowledge and research developments concerning these ash-related issues. It also gives an in-depth analysis and discussion on the formation mechanisms, urgent requirements, and potential countermeasures including the use of additives, co-firing, leaching, and alloying.Alkali species, particularly alkali chlorides and sulfates, cause alkali-induced slagging during biomass combustion. Thus, the mechanisms of generation, transformation, and sequestration of alkali species and the formation and growth of alkali-induced slagging, formed as an alternating overlapping multi-layered structure, are discussed in detail. For silicate melt-induced slagging (ash fusion), the evolutions of chemical composition of both the elements and minerals in the ash during combustion and existing problems in testing are overviewed. Pseudo-4D phase diagrams of (Ma2O)-MaeO-P2O5-Al2O3 and (Ma2O)-MaeO-SiO2-Al2O3 are proposed as effective tools to predict ash fusion characteristics and the properties of melt-induced slagging. Concerning agglomeration that typically occurs in fluidized bed furnaces, melt-induced and coating-induced agglomeration and coating-forming mechanisms are highlighted. Concerning corrosion, seven corrosion mechanisms associated with Cl2, gaseous, solid/deposited, and molten alkali chlorides, molten alkali sulfates and carbonates, and the sulfation/silication of alkali chlorides are comprehensively reviewed. The effects of alloying, salt state (solid, molten, or gaseous), combustion atmosphere, and temperature are also discussed systematically. For ash utilization, potential approaches to the use of fly ash, bottom ash, and biomass/coal co-fired ash as construction and agricultural materials are explored.Several criteria or evaluation indexes are introduced for alkali-induced slagging and agglomeration, and chemical equilibrium calculation and multicomponent phase diagrams of silicate melt-induced slagging and agglomeration. Meanwhile, remedies, including the use of additives, co-firing, leaching, alloying, and the establishment of regulations, are discussed.It is suggested that considerable attention should be focused on an understanding of the kinetics of alkali chemistry, which is essential for the transformation and sequestration of alkali species. A combination of heterogeneous chemical kinetics and multiphase equilibrium modeling is critical to estimating the speciation, saturation levels, and the presence of melt of the ash-forming matter. Further practical evaluation and improvement of the existing criterion numbers of alkali-induced slagging and agglomeration should be improved. The pseudo-4D phase diagrams of (Ma2O)-MaeO-P2O5-Al2O3 and (Ma2O)-MaeO-SiO2-Al2O3 should be constructed from the data derived from real biomass ashes rather than those of simulated ashes in order to provide the capability to predict the properties of silicate melt-induced slagging. Apart from Cr, research should be conducted to understand the effects of Si, Al, and Co, which exhibit high corrosion resistance, and heavy metals such as Zn and Pb, which may form low-melting chlorides that accelerate corrosion. Regulations, cooperation among biomass-fired power plants and other industries, potential technical research, and logistics should be strengthened to enable the extensive utilization of biomass ash. Finally, alkali-induced slagging, silicate melt-induced slagging, agglomeration, and corrosion occur concurrently, and thus, these issues should be investigated jointly rather than separately.  相似文献   

18.
Zhundong coal (ZDc) with a very large reserve is faced with severe problems of slagging and fouling during combustion in boilers because of the high-Na content. Sludge, the by-product of urban sewage treatment, is also faced with the problem in utilization. In this study, the co-combustion of ZDc and sludge was investigated in a laboratory-scale experimental apparatus before further studies in larger-scale setups. The experimental results confirm an interaction between ZDc and sludge during co-combustion, which was mainly caused by the Na catalytic action and improved the combustion performance of the co-fuels. The catalytic effect was particularly significant at low sludge mixing ratios. The reactions between Na-based compounds in ZDc and Si/Al/P-rich minerals in sludge, forming high-melting-point phosphates and aluminosilicates, not only increased Na retention in residual ash reducing the risk of fouling on tail-heating surfaces in boilers, but also raised the ash fusibility of the co-fuels avoiding low-temperature sintering. Even so, to prevent slagging, the high combustion temperature above 900 °C should be avoided during co-combustion because of the high Na retention in residual ash. Moreover, the high heavy metal retention in residual ash decreased the pollution caused by heavy metal volatilization during sludge combustion.  相似文献   

19.
20.
Catalytic steam gasification of char derived from low-rank coal possesses substantial potential as a source of hydrogen energy and syngas feedstocks, and its performances are largely associated with the employed catalysts. Therein, ion-exchangeable Na or Ca species are always regarded as excellent in-situ catalysts in low-rank coal. In this paper, gasification of Na-Char, Ca-Char and a Na/Ca-Char mixture with different partial pressures of steam was performed within a temperature range of 700–900 °C using a micro fluidized bed reaction analyzer. The results indicate that Na and Ca species could accelerate the gas release rate during gasification and even significantly increase H2 production, in sharp contrast to non-catalytic gasification. Variations in the product gases during Na-Char and Ca-Char gasification were completely different, which associated with the different deactivation pathways and catalytic reaction mechanisms of Na and Ca catalysts. With an increasing gasification temperature, the decreasing trend of H2 production for Na-Char gasification was mainly due to the loss of Na during gasification. Conversely, the enhancement of Ca activity promoted the H2 production. The H2/CO ratio of Ca-Char gasification at 700 °C approximately ranged from 1.0 to 2.0 as a function of the partial pressure of steam, which suggested catalytic gasification can be suitable for hydrogen-rich production and subsequent synthesis reactions. In addition, gasification of Na/Ca-Char mixture produced a higher hydrogen content in the product gases than that of Na-Char or Ca-Char gasification alone, particularly for the 30%Na/70%Ca-Char mixture. It implies that the high H2 production of 70%Ca30%Na-Char mixture was attributed to the cooperative effects of the Na and Ca species on the catalytic activity. This study provides comprehensive information regarding the effects of ion-exchangeable Na, Ca and a Na/Ca mixture on the hydrogen production and syngas composition during steam gasification, which provides new insight into the utilization of low-rank coal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号