首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
We characterize when an equivalence relation on the base set of a weak lattice \(\mathbf{L}=(L,\sqcup ,\sqcap )\) becomes a congruence on \(\mathbf{L}\) provided it has convex classes. We show that an equivalence relation on L is a congruence on \(\mathbf{L}\) if it satisfies the substitution property for comparable elements. Conditions under which congruence classes are convex are studied. If one fundamental operation of \(\mathbf{L}\) is commutative then \(\mathbf{L}\) is congruence distributive and all congruences of \(\mathbf{L}\) have convex classes.  相似文献   

2.
Two families of new asymmetric quantum codes are constructed in this paper. The first family is the asymmetric quantum codes with length \(n=q^{m}-1\) over \(F_{q}\), where \(q\ge 5\) is a prime power. The second one is the asymmetric quantum codes with length \(n=3^{m}-1\). These asymmetric quantum codes are derived from the CSS construction and pairs of nested BCH codes. Moreover, let the defining set \(T_{1}=T_{2}^{-q}\), then the real Z-distance of our asymmetric quantum codes are much larger than \(\delta _\mathrm{max}+1\), where \(\delta _\mathrm{max}\) is the maximal designed distance of dual-containing narrow-sense BCH code, and the parameters presented here have better than the ones available in the literature.  相似文献   

3.
The construction of quantum MDS codes has been studied by many authors. We refer to the table in page 1482 of (IEEE Trans Inf Theory 61(3):1474–1484, 2015) for known constructions. However, there have been constructed only a few q-ary quantum MDS \([[n,n-2d+2,d]]_q\) codes with minimum distances \(d>\frac{q}{2}\) for sparse lengths \(n>q+1\). In the case \(n=\frac{q^2-1}{m}\) where \(m|q+1\) or \(m|q-1\) there are complete results. In the case \(n=\frac{q^2-1}{m}\) while \(m|q^2-1\) is neither a factor of \(q-1\) nor \(q+1\), no q-ary quantum MDS code with \(d> \frac{q}{2}\) has been constructed. In this paper we propose a direct approach to construct Hermitian self-orthogonal codes over \(\mathbf{F}_{q^2}\). Then we give some new q-ary quantum codes in this case. Moreover many new q-ary quantum MDS codes with lengths of the form \(\frac{w(q^2-1)}{u}\) and minimum distances \(d > \frac{q}{2}\) are presented.  相似文献   

4.
5.
We show that the category \(L\) - \(\mathbf{Top}_{0}\) of \(T_{0}\) - \(L\) -topological spaces is the epireflective hull of Sierpinski \(L\) -topological space in the category \(L\) - \(\mathbf{Top}\) of \(L\) -topological spaces and the category \(L\) - \(\mathbf{Sob}\) of sober \(L\) -topological spaces is the epireflective hull of Sierpinski \(L\) -topological space in the category \(L\) - \(\mathbf{Top}_{0}\) .  相似文献   

6.
In this paper, we develop local discontinuous Galerkin method for the two-dimensional coupled system of incompressible miscible displacement problem. Optimal error estimates in \(L^{\infty }(0, T; L^{2})\) for concentration c, \(L^{2}(0, T; L^{2})\) for \(\nabla c\) and \(L^{\infty }(0, T; L^{2})\) for velocity \(\mathbf{u}\) are derived. The main techniques in the analysis include the treatment of the inter-element jump terms which arise from the discontinuous nature of the numerical method, the nonlinearity, and the coupling of the models. The main difficulty is how to treat the inter-element discontinuities of two independent solution variables (one from the flow equation and the other from the transport equation) at cell interfaces. Numerical experiments are shown to demonstrate the theoretical results.  相似文献   

7.
In this paper, two families of non-narrow-sense (NNS) BCH codes of lengths \(n=\frac{q^{2m}-1}{q^2-1}\) and \(n=\frac{q^{2m}-1}{q+1}\) (\(m\ge 3)\) over the finite field \(\mathbf {F}_{q^2}\) are studied. The maximum designed distances \(\delta ^\mathrm{new}_\mathrm{max}\) of these dual-containing BCH codes are determined by a careful analysis of properties of the cyclotomic cosets. NNS BCH codes which achieve these maximum designed distances are presented, and a sequence of nested NNS BCH codes that contain these BCH codes with maximum designed distances are constructed and their parameters are computed. Consequently, new nonbinary quantum BCH codes are derived from these NNS BCH codes. The new quantum codes presented here include many classes of good quantum codes, which have parameters better than those constructed from narrow-sense BCH codes, negacyclic and constacyclic BCH codes in the literature.  相似文献   

8.
We study the unextendible maximally entangled bases (UMEB) in \(\mathbb {C}^{d}\bigotimes \mathbb {C}^{d}\) and connect the problem to the partial Hadamard matrices. We show that for a given special UMEB in \(\mathbb {C}^{d}\bigotimes \mathbb {C}^{d}\), there is a partial Hadamard matrix which cannot be extended to a Hadamard matrix in \(\mathbb {C}^{d}\). As a corollary, any \((d-1)\times d\) partial Hadamard matrix can be extended to a Hadamard matrix, which answers a conjecture about \(d=5\). We obtain that for any d there is a UMEB except for \(d=p\ \text {or}\ 2p\), where \(p\equiv 3\mod 4\) and p is a prime. The existence of different kinds of constructions of UMEBs in \(\mathbb {C}^{nd}\bigotimes \mathbb {C}^{nd}\) for any \(n\in \mathbb {N}\) and \(d=3\times 5 \times 7\) is also discussed.  相似文献   

9.
This paper studies the problem of approximating a function f in a Banach space \(\mathcal{X}\) from measurements \(l_j(f)\), \(j=1,\ldots ,m\), where the \(l_j\) are linear functionals from \(\mathcal{X}^*\). Quantitative results for such recovery problems require additional information about the sought after function f. These additional assumptions take the form of assuming that f is in a certain model class \(K\subset \mathcal{X}\). Since there are generally infinitely many functions in K which share these same measurements, the best approximation is the center of the smallest ball B, called the Chebyshev ball, which contains the set \(\bar{K}\) of all f in K with these measurements. Therefore, the problem is reduced to analytically or numerically approximating this Chebyshev ball. Most results study this problem for classical Banach spaces \(\mathcal{X}\) such as the \(L_p\) spaces, \(1\le p\le \infty \), and for K the unit ball of a smoothness space in \(\mathcal{X}\). Our interest in this paper is in the model classes \(K=\mathcal{K}(\varepsilon ,V)\), with \(\varepsilon >0\) and V a finite dimensional subspace of \(\mathcal{X}\), which consists of all \(f\in \mathcal{X}\) such that \(\mathrm{dist}(f,V)_\mathcal{X}\le \varepsilon \). These model classes, called approximation sets, arise naturally in application domains such as parametric partial differential equations, uncertainty quantification, and signal processing. A general theory for the recovery of approximation sets in a Banach space is given. This theory includes tight a priori bounds on optimal performance and algorithms for finding near optimal approximations. It builds on the initial analysis given in Maday et al. (Int J Numer Method Eng 102:933–965, 2015) for the case when \(\mathcal{X}\) is a Hilbert space, and further studied in Binev et al. (SIAM UQ, 2015). It is shown how the recovery problem for approximation sets is connected with well-studied concepts in Banach space theory such as liftings and the angle between spaces. Examples are given that show how this theory can be used to recover several recent results on sampling and data assimilation.  相似文献   

10.
Let \(H_{1}, H_{2},\ldots ,H_{n}\) be separable complex Hilbert spaces with \(\dim H_{i}\ge 2\) and \(n\ge 2\). Assume that \(\rho \) is a state in \(H=H_1\otimes H_2\otimes \cdots \otimes H_n\). \(\rho \) is called strong-k-separable \((2\le k\le n)\) if \(\rho \) is separable for any k-partite division of H. In this paper, an entanglement witnesses criterion of strong-k-separability is obtained, which says that \(\rho \) is not strong-k-separable if and only if there exist a k-division space \(H_{m_{1}}\otimes \cdots \otimes H_{m_{k}}\) of H, a finite-rank linear elementary operator positive on product states \(\Lambda :\mathcal {B}(H_{m_{2}}\otimes \cdots \otimes H_{m_{k}})\rightarrow \mathcal {B}(H_{m_{1}})\) and a state \(\rho _{0}\in \mathcal {S}(H_{m_{1}}\otimes H_{m_{1}})\), such that \(\mathrm {Tr}(W\rho )<0\), where \(W=(\mathrm{Id}\otimes \Lambda ^{\dagger })\rho _{0}\) is an entanglement witness. In addition, several different methods of constructing entanglement witnesses for multipartite states are also given.  相似文献   

11.
We construct two sets of incomplete and extendible quantum pure orthogonal product states (POPS) in general bipartite high-dimensional quantum systems, which are all indistinguishable by local operations and classical communication. The first set of POPS is composed of two parts which are \(\mathcal {C}^m\otimes \mathcal {C}^{n_1}\) with \(5\le m\le n_1\) and \(\mathcal {C}^m\otimes \mathcal {C}^{n_2}\) with \(5\le m \le n_2\), where \(n_1\) is odd and \(n_2\) is even. The second one is in \(\mathcal {C}^m\otimes \mathcal {C}^n\) \((m, n\ge 4)\). Some subsets of these two sets can be extended into complete sets that local indistinguishability can be decided by noncommutativity which quantifies the quantumness of a quantum ensemble. Our study shows quantum nonlocality without entanglement.  相似文献   

12.
In this paper we consider the optimal discrimination of two mixed qubit states for a measurement that allows a fixed rate of inconclusive results. Our strategy is to transform the problem of two qubit states into a minimum error discrimination for three qubit states by adding a specific quantum state \(\rho _{0}\) and a prior probability \(q_{0}\), which behaves as an inconclusive degree. First, we introduce the beginning and the end of practical interval of inconclusive result, \(q_{0}^{(0)}\) and \(q_{0}^{(1)}\), which are key ingredients in investigating our problem. Then we obtain the analytic form of them. Next, we show that our problem can be classified into two cases \(q_{0}=q_{0}^{(0)}\) (or \(q_{0}=q_{0}^{(1)}\)) and \(q_{0}^{(0)}<q_{0}<q_{0}^{(1)}\). In fact, by maximum confidences of two qubit states and non-diagonal element of \(\rho _{0}\), our problem is completely understood. We provide an analytic solution of our problem when \(q_{0}=q_{0}^{(0)}\) (or \(q_{0}=q_{0}^{(1)}\)). However, when \(q_{0}^{(0)}<q_{0}<q_{0}^{(1)}\), we rather supply the numerical method to find the solution, because of the complex relation between inconclusive degree and corresponding failure probability. Finally we confirm our results using previously known examples.  相似文献   

13.
14.
We investigate cellular automata as acceptors for formal languages. In particular, we consider real-time one-way cellular automata (\(\text{OCA}\)) with the additional property that during a computation any cell of the \(\text{OCA}\) has the ability to dissolve itself, so-called shrinking one-way cellular automata (\(\text{SOCA}\)). It turns out that real-time \(\text{SOCA}\) are more powerful than real-time \(\text{OCA}\), since they can accept certain linear-time \(\text{OCA}\) languages. On the other hand, linear-time \(\text{OCA}\) are more powerful than real-time \(\text{SOCA}\), which is witnessed even by a unary language. Additionally, a construction is provided that enables real-time \(\text{SOCA}\) to accept the reversal of real-time iterative array languages. Finally, restricted real-time \(\text{SOCA}\) are investigated. We distinguish two limitations for the dissolving of cells. One restriction is to bound the total number of cells that are allowed to dissolve by some function. In this case, an infinite strict hierarchy of language classes is obtained. The second restriction is inspired by an approach to limit the amount of nondeterminism in \(\text{OCA}\). Compared with the first restriction, the total number of cells that may dissolve is still unbounded, but the number of time steps at which a cell may dissolve is bounded. The possibility to dissolve is allowed only in the first k time steps, where \(k\ge 0\) is some constant. For this mode of operation an infinite, tight, and strict hierarchy of language classes is obtained as well.  相似文献   

15.
In this paper, we study the ordering states with Tsallis relative \(\alpha \)-entropies of coherence and \(l_{1}\) norm of coherence for single-qubit states. Firstly, we show that any Tsallis relative \(\alpha \)-entropies of coherence and \(l_{1}\) norm of coherence give the same ordering for single-qubit pure states. However, they do not generate the same ordering for some high-dimensional states, even though these states are pure. Secondly, we also consider three special Tsallis relative \(\alpha \)-entropies of coherence for \(\alpha =2, 1, \frac{1}{2}\) and show these three measures and \(l_{1}\) norm of coherence will not generate the same ordering for some single-qubit mixed states. Nevertheless, they may generate the same ordering if we only consider a special subset of single-qubit mixed states. Furthermore, we find that any two of these three special measures generate different ordering for single-qubit mixed states. Finally, we discuss the degree of violation of between \(l_{1}\) norm of coherence and Tsallis relative \(\alpha \)-entropies of coherence. In a sense, this degree can measure the difference between these two coherence measures in ordering states.  相似文献   

16.
We begin by investigating relationships between two forms of Hilbert–Schmidt two-rebit and two-qubit “separability functions”—those recently advanced by Lovas and Andai (J Phys A Math Theor 50(29):295303, 2017), and those earlier presented by Slater (J Phys A 40(47):14279, 2007). In the Lovas–Andai framework, the independent variable \(\varepsilon \in [0,1]\) is the ratio \(\sigma (V)\) of the singular values of the \(2 \times 2\) matrix \(V=D_2^{1/2} D_1^{-1/2}\) formed from the two \(2 \times 2\) diagonal blocks (\(D_1, D_2\)) of a \(4 \times 4\) density matrix \(D= \left||\rho _{ij}\right||\). In the Slater setting, the independent variable \(\mu \) is the diagonal-entry ratio \(\sqrt{\frac{\rho _{11} \rho _ {44}}{\rho _ {22} \rho _ {33}}}\)—with, of central importance, \(\mu =\varepsilon \) or \(\mu =\frac{1}{\varepsilon }\) when both \(D_1\) and \(D_2\) are themselves diagonal. Lovas and Andai established that their two-rebit “separability function” \(\tilde{\chi }_1 (\varepsilon )\) (\(\approx \varepsilon \)) yields the previously conjectured Hilbert–Schmidt separability probability of \(\frac{29}{64}\). We are able, in the Slater framework (using cylindrical algebraic decompositions [CAD] to enforce positivity constraints), to reproduce this result. Further, we newly find its two-qubit, two-quater[nionic]-bit and “two-octo[nionic]-bit” counterparts, \(\tilde{\chi _2}(\varepsilon ) =\frac{1}{3} \varepsilon ^2 \left( 4-\varepsilon ^2\right) \), \(\tilde{\chi _4}(\varepsilon ) =\frac{1}{35} \varepsilon ^4 \left( 15 \varepsilon ^4-64 \varepsilon ^2+84\right) \) and \(\tilde{\chi _8} (\varepsilon )= \frac{1}{1287}\varepsilon ^8 \left( 1155 \varepsilon ^8-7680 \varepsilon ^6+20160 \varepsilon ^4-25088 \varepsilon ^2+12740\right) \). These immediately lead to predictions of Hilbert–Schmidt separability/PPT-probabilities of \(\frac{8}{33}\), \(\frac{26}{323}\) and \(\frac{44482}{4091349}\), in full agreement with those of the “concise formula” (Slater in J Phys A 46:445302, 2013), and, additionally, of a “specialized induced measure” formula. Then, we find a Lovas–Andai “master formula,” \(\tilde{\chi _d}(\varepsilon )= \frac{\varepsilon ^d \Gamma (d+1)^3 \, _3\tilde{F}_2\left( -\frac{d}{2},\frac{d}{2},d;\frac{d}{2}+1,\frac{3 d}{2}+1;\varepsilon ^2\right) }{\Gamma \left( \frac{d}{2}+1\right) ^2}\), encompassing both even and odd values of d. Remarkably, we are able to obtain the \(\tilde{\chi _d}(\varepsilon )\) formulas, \(d=1,2,4\), applicable to full (9-, 15-, 27-) dimensional sets of density matrices, by analyzing (6-, 9, 15-) dimensional sets, with not only diagonal \(D_1\) and \(D_2\), but also an additional pair of nullified entries. Nullification of a further pair still leads to X-matrices, for which a distinctly different, simple Dyson-index phenomenon is noted. C. Koutschan, then, using his HolonomicFunctions program, develops an order-4 recurrence satisfied by the predictions of the several formulas, establishing their equivalence. A two-qubit separability probability of \(1-\frac{256}{27 \pi ^2}\) is obtained based on the operator monotone function \(\sqrt{x}\), with the use of \(\tilde{\chi _2}(\varepsilon )\).  相似文献   

17.
Subspace clustering methods partition the data that lie in or close to a union of subspaces in accordance with the subspace structure. Such methods with sparsity prior, such as sparse subspace clustering (SSC) (Elhamifar and Vidal in IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781, 2013) with the sparsity induced by the \(\ell ^{1}\)-norm, are demonstrated to be effective in subspace clustering. Most of those methods require certain assumptions, e.g. independence or disjointness, on the subspaces. However, these assumptions are not guaranteed to hold in practice and they limit the application of existing sparse subspace clustering methods. In this paper, we propose \(\ell ^{0}\)-induced sparse subspace clustering (\(\ell ^{0}\)-SSC). In contrast to the required assumptions, such as independence or disjointness, on subspaces for most existing sparse subspace clustering methods, we prove that \(\ell ^{0}\)-SSC guarantees the subspace-sparse representation, a key element in subspace clustering, for arbitrary distinct underlying subspaces almost surely under the mild i.i.d. assumption on the data generation. We also present the “no free lunch” theorem which shows that obtaining the subspace representation under our general assumptions can not be much computationally cheaper than solving the corresponding \(\ell ^{0}\) sparse representation problem of \(\ell ^{0}\)-SSC. A novel approximate algorithm named Approximate \(\ell ^{0}\)-SSC (A\(\ell ^{0}\)-SSC) is developed which employs proximal gradient descent to obtain a sub-optimal solution to the optimization problem of \(\ell ^{0}\)-SSC with theoretical guarantee. The sub-optimal solution is used to build a sparse similarity matrix upon which spectral clustering is performed for the final clustering results. Extensive experimental results on various data sets demonstrate the superiority of A\(\ell ^{0}\)-SSC compared to other competing clustering methods. Furthermore, we extend \(\ell ^{0}\)-SSC to semi-supervised learning by performing label propagation on the sparse similarity matrix learnt by A\(\ell ^{0}\)-SSC and demonstrate the effectiveness of the resultant semi-supervised learning method termed \(\ell ^{0}\)-sparse subspace label propagation (\(\ell ^{0}\)-SSLP).  相似文献   

18.
New hybridized discontinuous Galerkin (HDG) methods for the interface problem for elliptic equations are proposed. Unknown functions of our schemes are \(u_h\) in elements and \(\hat{u}_h\) on inter-element edges. That is, we formulate our schemes without introducing the flux variable. We assume that subdomains \(\Omega _1\) and \(\Omega _2\) are polyhedral domains and that the interface \(\Gamma =\partial \Omega _1\cap \partial \Omega _2\) is polyhedral surface or polygon. Moreover, \(\Gamma \) is assumed to be expressed as the union of edges of some elements. We deal with the case where the interface is transversely connected with the boundary of the whole domain \(\overline{\Omega }=\overline{\Omega _1\cap \Omega _2}\). Consequently, the solution u of the interface problem may not have a sufficient regularity, say \(u\in H^2(\Omega )\) or \(u|_{\Omega _1}\in H^2(\Omega _1)\), \(u|_{\Omega _2}\in H^2(\Omega _2)\). We succeed in deriving optimal order error estimates in an HDG norm and the \(L^2\) norm under low regularity assumptions of solutions, say \(u|_{\Omega _1}\in H^{1+s}(\Omega _1)\) and \(u|_{\Omega _2}\in H^{1+s}(\Omega _2)\) for some \(s\in (1/2,1]\), where \(H^{1+s}\) denotes the fractional order Sobolev space. Numerical examples to validate our results are also presented.  相似文献   

19.
We analyse a class of nonoverlapping domain decomposition preconditioners for nonsymmetric linear systems arising from discontinuous Galerkin finite element approximations of fully nonlinear Hamilton–Jacobi–Bellman (HJB) partial differential equations. These nonsymmetric linear systems are uniformly bounded and coercive with respect to a related symmetric bilinear form, that is associated to a matrix \(\mathbf {A}\). In this work, we construct a nonoverlapping domain decomposition preconditioner \(\mathbf {P}\), that is based on \(\mathbf {A}\), and we then show that the effectiveness of the preconditioner for solving the nonsymmetric problems can be studied in terms of the condition number \(\kappa (\mathbf {P}^{-1}\mathbf {A})\). In particular, we establish the bound \(\kappa (\mathbf {P}^{-1}\mathbf {A})\lesssim 1+ p^6 H^3 /q^3 h^3\), where H and h are respectively the coarse and fine mesh sizes, and q and p are respectively the coarse and fine mesh polynomial degrees. This represents the first such result for this class of methods that explicitly accounts for the dependence of the condition number on q; our analysis is founded upon an original optimal order approximation result between fine and coarse discontinuous finite element spaces. Numerical experiments demonstrate the sharpness of this bound. Although the preconditioners are not robust with respect to the polynomial degree, our bounds quantify the effect of the coarse and fine space polynomial degrees. Furthermore, we show computationally that these methods are effective in practical applications to nonsymmetric, fully nonlinear HJB equations under h-refinement for moderate polynomial degrees.  相似文献   

20.
We study mutually unbiased maximally entangled bases (MUMEB’s) in bipartite system \(\mathbb {C}^d\otimes \mathbb {C}^d (d \ge 3)\). We generalize the method to construct MUMEB’s given in Tao et al. (Quantum Inf Process 14:2291–2300, 2015), by using any commutative ring R with d elements and generic character of \((R,+)\) instead of \(\mathbb {Z}_d=\mathbb {Z}/d\mathbb {Z}\). Particularly, if \(d=p_1^{a_1}p_2^{a_2}\ldots p_s^{a_s}\) where \(p_1, \ldots , p_s\) are distinct primes and \(3\le p_1^{a_1}\le \cdots \le p_s^{a_s}\), we present \(p_1^{a_1}-1\) MUMEB’s in \(\mathbb {C}^d\otimes \mathbb {C}^d\) by taking \(R=\mathbb {F}_{p_1^{a_1}}\oplus \cdots \oplus \mathbb {F}_{p_s^{a_s}}\), direct sum of finite fields (Theorem 3.3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号