首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the biodiesel produced from soybean crude oil was prepared by a method of alkaline-catalyzed transesterification. The important properties of biodiesel were compared with those of diesel. Diesel and biodiesel were used as fuels in the compression ignition engine, and its performance, emissions and combustion characteristics of the engine were analyzed. The results showed that biodiesel exhibited the similar combustion stages to that of diesel, however, biodiesel showed an earlier start of combustion. At lower engine loads, the peak cylinder pressure, the peak rate of pressure rise and the peak of heat release rate during premixed combustion phase were higher for biodiesel than for diesel. At higher engine loads, the peak cylinder pressure of biodiesel was almost similar to that of diesel, but the peak rate of pressure rise and the peak of heat release rate were lower for biodiesel. The power output of biodiesel was almost identical with that of diesel. The brake specific fuel consumption was higher for biodiesel due to its lower heating value. Biodiesel provided significant reduction in CO, HC, NOx and smoke under speed characteristic at full engine load. Based on this study, biodiesel can be used as a substitute for diesel in diesel engine.  相似文献   

2.
Experiments has been carried out to estimate the performance, emission and combustion characteristics of a single cylinder; four stroke variable compression ratio multi fuel engine fuelled with waste cooking oil methyl ester and its blends with standard diesel. Tests has been conducted using the fuel blends of 20%, 40%, 60% and 80% biodiesel with standard diesel, with an engine speed of 1500 rpm, fixed compression ratio 21 and at different loading conditions. The performance parameters elucidated includes brake thermal efficiency, specific fuel consumption, brake power, indicated mean effective pressure, mechanical efficiency and exhaust gas temperature. The exhaust gas emission is found to contain carbon monoxide, hydrocarbon, nitrogen oxides and carbon dioxide. The results of the experiment has been compared and analyzed with standard diesel and it confirms considerable improvement in the performance parameters as well as exhaust emissions. The blends when used as fuel results in the reduction of carbon monoxide, hydrocarbon, carbon dioxide at the expense of nitrogen oxides emissions. It has found that the combustion characteristics of waste cooking oil methyl ester and its diesel blends closely followed those of standard diesel.  相似文献   

3.
《能源学会志》2014,87(2):102-113
In this study, combustion and emissions characteristics of a turbocharged compression ignition engine fueled with dimethyl ether (DME) and biodiesel blends are experimentally investigated. The effects of nozzle parameter on combustion and emissions are evaluated. The result shows that with the increase of DME proportion, ignition delay, the peak in-cylinder pressure, peak heat-release rate, peak in-cylinder temperature decrease, and their phases retard. Compared to the nozzle 6 × 0.40 mm, the peak cylinder pressure and peak heat-release rate are higher with nozzle 6 × 0.35 mm, and their phases are advanced. Increased DME proportion in fuel blends causes greater differences. Compared to biodiesel, NOx emissions of blends significantly decrease; HC emissions and CO emissions increase slightly. DME–biodiesel blends can be used as an alternative in a turbocharged CI engine. To obtain low NOx emissions and a soft engine operation, for high DME proportion blended fuels, nozzle of 6 × 0.40 mm adopted.  相似文献   

4.
The call for the use of biofuels which is being made by most governments following international energy policies is presently finding some resistance from car and components manufacturing companies, private users and local administrations. This opposition makes it more difficult to reach the targets of increased shares of use of biofuels in internal combustion engines. One of the reasons for this resistance is a certain lack of knowledge about the effect of biofuels on engine emissions. This paper collects and analyzes the body of work written mainly in scientific journals about diesel engine emissions when using biodiesel fuels as opposed to conventional diesel fuels. Since the basis for comparison is to maintain engine performance, the first section is dedicated to the effect of biodiesel fuel on engine power, fuel consumption and thermal efficiency. The highest consensus lies in an increase in fuel consumption in approximate proportion to the loss of heating value. In the subsequent sections, the engine emissions from biodiesel and diesel fuels are compared, paying special attention to the most concerning emissions: nitric oxides and particulate matter, the latter not only in mass and composition but also in size distributions. In this case the highest consensus was found in the sharp reduction in particulate emissions.  相似文献   

5.
Utilization of the waste products as an alternative fuel could reduce the dependence on fossil fuel. The three types of upgraded waste source fuels discussed in this paper were tire derived fuel (TDF), waste plastic disposal fuel (WPD) and upgraded waste cooking oil (UWCO). The detailed combustion pressure showed that kinematic viscosity and cetane number played an important role in determining the combustion quality. TDF's high kinematic viscosity and low cetane number affected its fuel vaporization process; thus, lengthening its ignition delay. UWCO showed the 14% higher power and 13.8% higher torque compared to diesel fuel (DF). WPD produced the lowest NOx due to its low pressure curve during combustion. TDF had produced the highest exhaust emissions (CO, CO2, NO and NOx). Particulate matter (PM) emissions by UWCO blends were lower than DF. UWCO's soot concentration was 40% lower than DF and increased to 62.5% from low to high engine speed operation.  相似文献   

6.
In this study, the applicabilities of Artificial Neural Networks (ANNs) have been investigated for the performance and exhaust-emission values of a diesel engine fueled with biodiesels from different feedstocks and petroleum diesel fuels. The engine performance and emissions characteristics of two different petroleum diesel-fuels (No. 1 and No. 2), biodiesels (from soybean oil and yellow grease), and their 20% blends with No. 2 diesel fuel were used as experimental results. The fuels were tested at full load (100%) at 1400-rpm engine speed, where the engine torque was 257.6 Nm. To train the network, the average molecular weight, net heat of combustion, specific gravity, kinematic viscosity, C/H ratio and cetane number of each fuel are used as the input layer, while outputs are the brake specific fuel-consumption, exhaust temperature, and exhaust emissions. The back-propagation learning algorithm with three different variants, single layer, and logistic sigmoid transfer function were used in the network. By using weights in the network, formulations have been given for each output. The network has yielded R2 values of 0.99 and the mean % errors are smaller than 4.2 for the training data, while the R2 values are about 0.99 and the mean % errors are smaller than 5.5 for the test data. The performance and exhaust emissions from a diesel engine, using biodiesel blends with No. 2 diesel fuel up to 20%, have been predicted using the ANN model.  相似文献   

7.
Water electrolysis produces HHO gas by using sodium hydroxide catalyst. Dry and wet cells designs are applied producing the gas flow rates at 0.5 and 0.75 LPM, respectively. Tests are done in a diesel engine at engine speed variation and full load. Performance, combustion characteristics and emissions investigations of diesel engines using HHO gas from dry and wet cells are performed. HHO gas addition enhances the brake thermal efficiency by 2 and 2.5% but the exhaust gas temperature highest decreases for dry and wet cells are 8 and 10%, respectively about diesel oil. The maximum decreases are evaluated as for CO (15, 22%), HC (31, 39%), NOx (35, 42%) and smoke emissions (25, 35%), respectively for dry and wet cells about diesel fuel. The improvements in cylinder pressures are 5 and 10%, respectively and the heat release rate enhancements are 4.5 and 6.5%, respectively about pure diesel for dry and wet configurations.  相似文献   

8.
Through experiments conducted on a single cylinder direct injection (DI) diesel engine, effects of exhaust gas recirculatoin (EGR) on combustion and emission during cold start were investigated. Combustion of first firing cycle can be promoted significantly by introducing EGR. In experiments, when partially closed choking valve and partially or fully opened EGR valve, peak cylinder pressure of first firing cycle was about 45% higher than that under normal condition without EGR, and the start of combustion (SOC) was also much earlier. EGR also had effects on combustion stability. In the case, which kept 50% or 100% opening of EGR valve (OEV) and kept 100% opening of choking valve (OCV), more stable combustion process was achieved when common rail pressure decreased during cold start. However, excessive amount of EGR led to extreme unstable combustion and even misfiring. Opacity and NO emissions were also analyzed in detail. In the case with maximum EGR, the lowest average opacity, which was less than 4%, was achieved during initial several firing cycles of cold start. But in the later phase, excessive amount of EGR led to a great deal of white smoke emission. NO emission during initial phase of cold start is mainly affected by increase in fuel amount of injection. When combustion became stable gradually, EGR showed significant effect on NO reduction.  相似文献   

9.
The effects of biodiesel (rapeseed methyl ester, RME) and different diesel/RME blends on the diesel engine NOx emissions, smoke, fuel consumption, engine efficiency, cylinder pressure and net heat release rate are analysed and presented. The combustion of RME as pure fuel or blended with diesel in an unmodified engine results in advanced combustion, reduced ignition delay and increased heat release rate in the initial uncontrolled premixed combustion phase. The increased in-cylinder pressure and temperature lead to increased NOx emissions while the more advanced combustion assists in the reduction of smoke compared to pure diesel combustion. The lower calorific value of RME results in increased fuel consumption but the engine thermal efficiency is not affected significantly. When similar percentages (% by volume) of exhaust gas recirculation (EGR) are used in the cases of diesel and RME, NOx emissions are reduced to similar values, but the smoke emissions are significantly lower in the case of RME. The retardation of the injection timing in the case of pure RME and 50/50 (by volume) blend with diesel results in further reduction of NOx at a cost of small increases of smoke and fuel consumption.  相似文献   

10.
Extensive studies have been dedicated in the last decade to the possibility to use hydrogen in the dual-fuel mode to improve combustion characteristics and emissions of a diesel engine. The results of these studies, using pure hydrogen or hydrogen containing gas produced through water electrolysis, are notably different.The present investigation was conducted on a tractor diesel engine running with small amounts of the gas—provided by a water electrolyzer—aspirated in the air stream inducted in the cylinder. The engine was operated at light and medium loads and various speeds.It was found that the addition of HRG gas has a slight negative impact, up to 2%, on the engine brake thermal efficiency. Smoke is significantly reduced, up to 30%, with HRG enrichment, while NOx concentrations vary in both senses, up to 14%, depending on the engine operation mode. A relative small amount of HRG gas can be used with favorable effects on emissions and with a small penalty in thermal efficiency.  相似文献   

11.
An experimental investigation on DI diesel engine with hydrogen fuel   总被引:1,自引:0,他引:1  
The internal combustion engines have already become an indispensable and integral part of our present day life style, particularly in the transportation and agricultural sectors [Nagalingam B. Properties of hydrogen. In: Proceedings of the summer school of hydrogen energy, IIT Madras, 1984]. Unfortunately the survival of these engines has, of late, been threatened due to the problems of fuel crisis and environmental pollution. Therefore, to sustain the present growth rate of civilization, a nondepletable, clean fuel must be expeditiously sought. Hydrogen exactly caters to the specified needs. Hydrogen, even though “renewable” and “clean burning”, does give rise to some undesirable combustion problems in an engine operation, such as backfire, pre-ignition, knocking and rapid rate of pressure rise [Srinivasa Rao P. Utilization of hydrogen in a dual fueled engine. In: Proceedings of the summer school of hydrogen energy, IIT Madras, 1984; Siebers DL. Hydrogen combustion under diesel engine conditions. Hydrogen Energy 1998;23:363–71]. The present investigation compares the performance and emission characteristics of a DI diesel engine with gaseous hydrogen as a fuel inducted by means of carburation technique and timed port injection technique (TPI) along with diesel as a source of ignition [Swain N, Design and testing of dedicated hydrogen-fueled engine. SAE 961077, 1996]. In the present study the specific energy consumption, NOx emission and the exhaust gas temperature increased by 6%, 8% and 14%, respectively, and brake thermal efficiency and smoke level reduced by 5% and 8%, respectively, using carburation technique compared to baseline diesel. But in the TPI technique, the specific energy consumption, exhaust gas temperature and smoke level reduced by 15%, 45% and 18%, respectively. The brake thermal efficiency and NOx increased by 17% and 34%, respectively, compared to baseline diesel. The emissions such as HC, CO, and CO2 is very low in both carburation and TPI techniques compared baseline diesel.  相似文献   

12.
《能源学会志》2014,87(1):11-17
A direct injection diesel engine fueled by a diesel/biodiesel blend from waste cooking oil up to B100 (a blend of 100% biodiesel content) indicated a combustion efficiency rise by 1.8% at full load. The soot peak volume fraction was reduced by 15.2%, while CO and HC concentrations respectively decreased by 20 and 28.5%. The physical and chemical delay periods respectively diminished by 1.2 and 15.8% for engine noise to pronounce 6.5% reduction. Injection retarding by 5° reduced NOx to those original levels of B0 (a blend of zero biodiesel content) and combined respective reduction magnitudes of 10 and 7% in CO and HC at 75% load. Increasing the speed reduced CO and HC respectively by 26 and 42% at 2.36 times the droplet average strain rate. By coupling the turbulence model to the spray break-up and chemical kinetics models, increasing the injection pressure simultaneously reduced CO, HC and NOx at 17% exhaust gas recirculation ratio.  相似文献   

13.
In this study, waste tyre was pyrolyzed at different conditions such as temperature, heating rate and inert purging gas (N2) flow rate. Pyrolysis parameters were optimized. Optimum parameters were determined. The main objective of this study was to investigate combustion, performance and emissions of diesel and waste tyre oil fuel blend. Experimental investigation was performed in a single cylinder, direct injection, air cooled diesel engine at maximum engine torque speed of 2200 rpm and four different engine load including 3.75, 7.5, 11.25 and 15 Nm. The effects of waste tyre oil on combustion characteristics such as cylinder pressure, heat release rate, ignition delay (ID), combustion duration, engine performance were investigated. In-cylinder pressure and heat release rate increased with waste tyre oil fuel blend (W10) with the increase of engine load. In addition, ID was shortened with the increase of engine load for test fuels but it increased with the addition of waste tyre oil. Lower imep values were obtained because of the lower calorific value of waste tyre oil fuels. Maximum thermal efficiencies were determined as 28.27% and %25.12 with diesel and W10 respectively at 11.25 Nm engine load. When test results were examined, it was seen that waste tyre oil highly affected combustion characteristics, performance and emissions.  相似文献   

14.
《能源学会志》2019,92(3):704-716
In this paper, the combustion model of industrial furnace was established using numerical simulations. The application of air-staged combustion technology was used to solve the problem of high NOX emissions produced from the combustion of biodiesel in industrial furnaces. The simulation results were verified through experiments. The effects of secondary air distribution position (Zsec), secondary air distribution ratio (fsec) and the excess air coefficient (α) on the temperature field, incident radiation field and NOX concentration field distribution in the furnace were also studied. It was found that the simulated temperature and NOX concentration at the outlet of furnace were in good agreement with the experimentally determined results. When the staged combustion was not adopted, the NOX production in the furnace was at a high level. The average NOx concentration at the exit of the furnace was 0.000538 kg/m3. With the introduction of the staged ventilation technology, the lowest NOX production was 0.000276 kg/m3, the best reduction effect was 48.7%. The optimal two-air-staged combustion test conditions were included Zsec of 50%, fsec of 30%, and α of 1.15.  相似文献   

15.
In this study, the two most effective aromatic amine antioxidants N,N′-diphenyl-1,4-phenylenediamine (DPPD) and N-phenyl-1,4-phenylenediamine (NPPD), were used at a concentration of 2000 ppm. The impact of antioxidants on the oxidation stability, exhaust emission and engine performance of a multi-cylinder diesel engine fuelled with MB20 (20% Moringa oil methyl ester and 80% diesel fuel blend) were analysed at varying speed conditions at an interval of 500 rpm and a constant load. It was observed that, blending with diesel enhanced the oxidation stability of the moringa biodiesel by approximately 6.97 h, and the addition of DPPD and NPPD to MB20 increased the oxidation stability up to 34.5 and 18.4 h, respectively. The results also showed that the DPPD- and NPPD-treated blends reduced the NOx emission by 7.4% and 3.04%, respectively, compared to the untreated blend. However, they do have higher carbon monoxide (CO) and hydrocarbon (HC) levels and smoke opacities, but it should be noted that these emissions are still well below the diesel fuel emission level. The results show that the addition of antioxidant with MB20 also improves the engine's performance characteristics. Based on this study, MB20 blends with amine antioxidants can be used in diesel engines without any modification.  相似文献   

16.
Diesel engines are the most trusted power sources in the transportation industry. They intake air and emit, among others, the pollutants NOXNOX and particulate matter. Continuous efforts and tests have tried to reduce fuel consumption and exhaust emissions of internal combustion engines. Alternative fuels are key to meeting upcoming stringent emission norms. We study hydrogen as an air-enrichment medium with diesel as an ignition source in a stationary diesel engine system to improve engine performance and reduce emissions. Stationary engines can be operated with less fuel than neat diesel operations, resulting in lower smoke levels and particulate emissions. Hydrogen (H2)(H2)-enriched air systems in diesel engines enable the realization of higher brake thermal efficiency, resulting in lower specific energy consumption (SEC). NOXNOX emissions are reduced from 2762 to 515 ppm with 90% hydrogen enrichment at 70% engine load. At full load, NOXNOX emission marginally increases compared to diesel operation, while both smoke and particulate matter are reduced by about 50%. The brake thermal efficiency increases from 22.78% to 27.9% with 30% hydrogen enrichment. Thus, using hydrogen-enriched air in a diesel engine produces less pollution and better performance.  相似文献   

17.
An experimental study was conducted on a diesel engine fueled with ultra-low sulfur diesel (ULSD), palm methyl ester (PME), a blended fuel containing 50% by volume each of the ULSD and PME, and naturally aspirated hydrogen, at an engine speed of 1800 rev min−1 under five loads. Hydrogen was added to provide 10% and 20% of the total fuel energy. The following results are obtained with hydrogen addition. There is little change in peak in-cylinder pressure and peak heat release rate. The influence on fuel consumption and brake thermal efficiency is engine load and fuel dependent; being negative for the three liquid fuels at low engine loads but positive for ULSD and B50 and negligible for PME at medium-to-high loads. CO and CO2 emissions decrease. HC decreases at medium-to-high loads, but increases at low loads. NOx emission increases for PME only but NO2 increases for the three liquid fuels. Smoke opacity, particle mass and number concentrations are all reduced for the three liquid fuels.  相似文献   

18.
The effect of the addition of hydrogen (H2) on the combustion process and nitric oxide (NO) formation in a H2-diesel dual fuel engine was numerically investigated. The model developed using AVL FIRE as a platform was validated against the cylinder pressure and heat release rate measured with the addition of up to 6% (vol.) H2 into the intake mixture of a heavy-duty diesel engine with exhaust gas recirculation (EGR). The validated model was applied to further explore the effect of the addition of 6%–18% (vol.) H2 on the combustion process and formation of NO in H2-diesel dual fuel engines. When the engine was at N = 1200 rpm and 70% load, the simulation results showed that the addition of H2 prolonged ignition delay, enhanced premixed combustion, and promoted diffusion combustion of the diesel fuel. The maximum peak cylinder pressure was observed with addition of 12% (vol.) H2. In comparison, the maximum peak heat release rate was observed with the addition of 16% (vol.) H2. The addition of H2 was a crucial factor dominating the increased NO emissions. Meanwhile, the addition of H2 reduced soot emissions substantially, which may be due to the reduced diesel fuel burned each cycle. Furthermore, proper combination of adding H2 with EGR can improve combustion performance and reduce NO emissions.  相似文献   

19.
With a specific end goal to take care of the worldwide demand for energy, a broad research is done to create alternative and cost effective fuel. The fundamental goal of this examination is to investigate the combustion, performance and emission characteristics of diesel engine using biodiesel blends enriched with HHO gas. The biodiesel blends are gotten by blending KOME obtained from transesterification of karanja oil in various proportions with neat diesel. The HHO gas is produced by the electrolysis of water in the presence of sodium bicarbonate electrolyte. The constant flow of HHO gas accompanied with biodiesel guarantees lessened brake specific fuel consumption by 2.41% at no load and 17.53% at full load with increased the brake thermal efficiency by 2.61% at no load and 21.67% at full load contrasted with neat diesel operation. Noteworthy decline in unburned hydrocarbon, carbon monoxide, carbon-dioxide emissions and particulate matter with the exception of NOx discharge is encountered. The addition of EGR controls this hike in NOx with a slight decline in the performance characteristics. It is clear that the addition of HHO gas with biodiesel blends along with EGR in the test engine improved the overall characterization of engine.  相似文献   

20.
In the present experimental investigation, waste frying oil a non-edible vegetable oil was used as an alternative fuel for diesel engine. The high viscosity of the waste frying oil was reduced by preheating. The properties of waste frying oil such as viscosity, density, calorific value and flash point were determined. The effect of temperature on the viscosity of waste frying oil was evaluated. It was determined that the waste frying oil requires a heating temperature of 135 °C to bring down its viscosity to that of diesel at 30 °C. The performance and exhaust emissions of a single cylinder diesel engine was evaluated using diesel, waste frying oil (without preheating) and waste frying oil preheated to two different inlet temperatures (75 and 135 °C). The engine performance was improved and the CO and smoke emissions were reduced using preheated waste frying oil. It was concluded from the results of the experimental investigation that the waste frying oil preheated to 135 °C could be used as a diesel fuel substitute for short-term engine operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号