首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we investigate the properties of the relative negations in non-commutative residuated lattices and their applications. We define the notion of a relative involutive FL-algebra and we generalize to relative negations some results proved for involutive pseudo-BCK algebras. The relative locally finite IFL-algebra is defined and it is proved that an interval algebra of a relative locally finite divisible IFL-algebra is relative involutive. Starting from the observation that in the definition of states, the standard MV-algebra structure of [0, 1] intervenes, there were introduced the states on bounded pseudo-BCK algebras, pseudo-hoops and residuated lattices with values in the same kind of structures and they were studied under the name of generalized states. For the case of commutative residuated lattices the generalized states were studied in the sense of relative negation. We define and study the relative generalized states on non-commutative residuated lattices. One of the main results consists of proving that every order-preserving generalized Bosbach state is a relative generalized Rie?an state. Some conditions are given for a relative generalized Rie?an state to be a generalized Bosbach state. Finally, we develop a concept of states on IFL-algebras.  相似文献   

2.
The notion of contact algebra is one of the main tools in the region based theory of space. It is an extension of Boolean algebra with an additional relation C called contact. The elements of the Boolean algebra are considered as formal representations of spatial regions as analogues of physical bodies and Boolean operations are considered as operations for constructing new regions from given ones and also to define some mereological relations between regions as part-of, overlap and underlap. The contact relation is one of the basic mereotopological relations between regions expressing some topological nature. It is used also to define some other important mereotopological relations like non-tangential inclusion, dual contact, external contact and others. Most of these definitions are given by means of the operation of Boolean complementation. There are, however, some problems related to the motivation of the operation of Boolean complementation. In order to avoid these problems we propose a generalization of the notion of contact algebra by dropping the operation of complement and replacing the Boolean part of the definition by that of a distributive lattice. First steps in this direction were made in (Düntsch et al. Lect. Notes Comput. Sci. 4136, 135–147, 2006, Düntsch et al. J. Log. Algebraic Program. 76, 18–34, 2008) presenting the notion of distributive contact lattice based on the contact relation as the only mereotopological relation. In this paper we consider as non-definable primitives the relations of contact, nontangential inclusion and dual contact, extending considerably the language of distributive contact lattices. Part I of the paper is devoted to a suitable axiomatization of the new language called extended distributive contact lattice (EDC-lattice) by means of universal first-order axioms true in all contact algebras. EDC-lattices may be considered also as an algebraic tool for a certain subarea of mereotopology, called in this paper distributive mereotopology. The main result of Part I of the paper is a representation theorem, stating that each EDC-lattice can be isomorphically embedded into a contact algebra, showing in this way that the presented axiomatization preserves the meaning of mereotopological relations without considering Boolean complementation. Part II of the paper is devoted to topological representation theory of EDC-lattices, transferring into the distributive case important results from the topological representation theory of contact algebras. It is shown that under minor additional assumptions on distributive lattices as extensionality of the definable relations of overlap or underlap one can preserve the good topological interpretations of regions as regular closed or regular open sets in topological space.  相似文献   

3.
In this paper, based on a complete residuated lattice L, we introduce the definitions of L-quantum spaces and continuous mappings. Then we establish an adjunction between the category of stratified L-quantum spaces and the opposite category of two-sided L-quantales. We also prove that the category of sober L-quantum spaces is dually equivalent to the category of spatial two-sided L-quantales.  相似文献   

4.
Generalized Bosbach and Rie c? an states, which are useful for the development of an algebraic theory of probabilistic models for commutative or non-commutative fuzzy logics, have been investigated in the literature. In this paper, a new way arising from generalizing residuated lattice-based filters from commutative case to non-commutative one is applied to introduce new notions of generalized Bosbach and Rie c? an states, which are called hybrid ones, on non-commutative residuated lattices is provided, and the relationships between hybrid generalized states and those existing ones are studied, examples show that they are different. In particular, two problems from L.C. Ciungu, G. Georgescu, and C. Mure, “Generalized Bosbach States: Part I” (Archive for Mathematical Logic 52 (2013):335–376) are solved, and properties of hybrid generalized states, which are similar to those on commutative residuated lattices, are obtained without the condition “strong”.  相似文献   

5.
For each sufficiently large n, there exists a unary regular language L such that both L and its complement L c are accepted by unambiguous nondeterministic automata with at most n states, while the smallest deterministic automata for these two languages still require a superpolynomial number of states, at least \(e^{\Omega(\sqrt[3]{n\cdot\ln^{2}n})}\). Actually, L and L c are “balanced” not only in the number of states but, moreover, they are accepted by nondeterministic machines sharing the same transition graph, differing only in the distribution of their final states. As a consequence, the gap between the sizes of unary unambiguous self-verifying automata and deterministic automata is also superpolynomial.  相似文献   

6.
Given a residuated lattice L, we prove that the subset MV(L) of complement elements x * of L generates an MV-algebra if, and only if L is semi-divisible. Riečan states on a semi-divisible residuated lattice L, and Riečan states on MV(L) are essentially the very same thing. The same holds for Bosbach states as far as L is divisible. There are semi-divisible residuated lattices that do not have Bosbach states. These results were obtained when the authors visited Academy of Science, Czech Republic, Institute of Comp. Sciences in Autumn 2006.  相似文献   

7.
Binary relations play an important role in rough set theory. This paper investigates the similarity of binary relations based on L-fuzzy topologies, where L is a boolean algebra. First, rough approximations based on a boolean algebra are proposed through successor neighborhoods on binary relations. Next, L-fuzzy topologies induced by binary relations are investigated. Finally, similarity of binary relations is introduced by using the L-fuzzy topologies and the fact that every binary relation is solely similar to some preorder relation is proved. It is worth mentioning that similarity of binary relations are both originated in the L-fuzzy topology and independent of the L-fuzzy topology.  相似文献   

8.
Triangle algebras are equationally defined structures that are equivalent with certain residuated lattices on a set of intervals, which are called interval-valued residuated lattices (IVRLs). Triangle algebras have been used to construct triangle logic (TL), a formal fuzzy logic that is sound and complete w.r.t. the class of IVRLs.In this paper, we prove that the so-called pseudo-prelinear triangle algebras are subdirect products of pseudo-linear triangle algebras. This can be compared with MTL-algebras (prelinear residuated lattices) being subdirect products of linear residuated lattices.As a consequence, we are able to prove the pseudo-chain completeness of pseudo-linear triangle logic (PTL), an axiomatic extension of TL introduced in this paper. This kind of completeness is the analogue of the chain completeness of monoidal T-norm based logic (MTL).This result also provides a better insight in the structure of triangle algebras; it enables us, amongst others, to prove properties of pseudo-prelinear triangle algebras more easily. It is known that there is a one-to-one correspondence between triangle algebras and couples (L,α), in which L is a residuated lattice and α an element in that residuated lattice. We give a schematic overview of some properties of pseudo-prelinear triangle algebras (and a number of others that can be imposed on a triangle algebra), and the according necessary and sufficient conditions on L and α.  相似文献   

9.
The goal of this paper is to focus on the notions of merotopy and also merotopology in the soft universe. First of all, we propose L-soft merotopic (nearness) spaces and L-soft guild. Then, we study binary, contigual, regular merotopic spaces and also relations between them. We show that the category of binary L-soft nearness spaces is bireflective in the category of L-soft nearness spaces. Later, we define L-approach soft merotopological (nearness) spaces by giving several examples. Finally, we define a simpler characterization of L-approach soft grill merotopological space called grill-determined L-approach soft merotopological space. We investigate the categorical structures of these notions such as we prove that the category of grill-determined L-approach soft merotopological spaces is a topological category over the category of L-soft topological spaces. At the end, we define a partial order on the family of all L-approach soft grill merotopologies and show that this family is a completely distributive complete lattice with respect to the defined partial order.  相似文献   

10.
We propose an optical scheme to prepare large-scale maximally entangled W states by fusing arbitrary-size polarization entangled W states via polarization-dependent beam splitter. Because most of the currently existing fusion schemes are suffering from the qubit loss problem, that is the number of the output entangled qubits is smaller than the sum of numbers of the input entangled qubits, which will inevitably decrease the fusion efficiency and increase the number of fusion steps as well as the requirement of quantum memories, in our scheme, we design a effect fusion mechanism to generate \(W_{m+n}\) state from a n-qubit W state and a m-qubit W state without any qubit loss. As the nature of this fusion mechanism clearly increases the final size of the obtained W state, it is more efficient and feasible. In addition, our scheme can also generate \(W_{m+n+t-1}\) state by fusing a \(W_m\), a \(W_n\) and a \(W_t\) states. This is a great progress compared with the current scheme which has to lose at least two particles in the fusion of three W states. Moreover, it also can be generalized to the case of fusing k different W states, and all the fusion schemes proposed here can start from Bell state as well.  相似文献   

11.
We study the strategies in feature selection with sparse support vector machine (SVM). Recently, the socalled L p -SVM (0 < p < 1) has attracted much attention because it can encourage better sparsity than the widely used L 1-SVM. However, L p -SVM is a non-convex and non-Lipschitz optimization problem. Solving this problem numerically is challenging. In this paper, we reformulate the L p -SVM into an optimization model with linear objective function and smooth constraints (LOSC-SVM) so that it can be solved by numerical methods for smooth constrained optimization. Our numerical experiments on artificial datasets show that LOSC-SVM (0 < p < 1) can improve the classification performance in both feature selection and classification by choosing a suitable parameter p. We also apply it to some real-life datasets and experimental results show that it is superior to L 1-SVM.  相似文献   

12.
Quantum-mechanical motion of a spin-half particle is examined in the axially symmetric fields of static naked singularities formed by a mass distribution with a quadrupole moment (q-metric). The analysis is performed by means of the method of effective potentials of the Dirac equation generalized to the case where radial and angular variables are not separated. If ?1 < q < qlim, |qlim| ? 1, where q is the quadrupolemoment in proper units, the naked singularities do not exclude the existence of stationary bound states of Dirac particles for a prolate mass distribution in the q-metric along the axial axis. For an oblate mass distribution, the naked singularities of the q-metric are separated from a Dirac particle by infinitely large repulsive barriers followed by a potential well which deepens while moving apart from the equator (from θ = θ min or θ = π ? θ min) toward the poles. The poles make an exception, and at 0 < q < q*, there are some points θ i for particle states with j ≥ 3/2.  相似文献   

13.
In this paper, we study further the filter theory of residuated lattices. First, we discuss the concepts of filters and normal filters of residuated lattices and propose some equivalent conditions for them. Then we introduce and investigate the notions of v-filter and normal v-filter of a residuated lattice with a weak vt-operator and lay bare the formulas for calculating the v-filters and the normal v-filters generated by subsets. Finally we show that the lattices of v-filters and normal v-filters of a residuated lattice with a vt-operator are both complete Brouwerian lattices.  相似文献   

14.
We investigate the proportional relationships for spectrums and standard Jordan normal forms (SJNFs) of the 4 by 4 matrices constructed from coefficient matrices of two SLOCC (stochastic local operations and classical communication) equivalent states of n qubits. The proportional relationships permit a reduction of SLOCC classification of n (\(\ge 4\)) qubits to a classification of 4 by 4 complex matrices. Invoking the proportional relationships for spectrums and SJNFs, pure states of n (\(\ge 4\)) qubits are partitioned into 12 groups or less and 34 families or less under SLOCC, respectively. Specially, it is true for four qubits.  相似文献   

15.
Recently, some authors considered the origin of a type-IV singular bounce in modified gravity and obtained the explicit form of F(R) which can produce this type of cosmology. In this paper, we show that during the contracting branch of type-IV bouncing cosmology, the sign of gravity changes, and antigravity emerges. In our model, M0 branes get together and shape a universe, an anti-universe, and a wormhole which connects them. As time passes, this wormhole is dissolved in the universes, F(R) gravity emerges, and the universe expands. When the brane universes become close to each other, the squared energy of their system becomes negative, and some tachyonic states are produced. To remove these states, universes are assumed to be compact, the sign of compacted gravity changes, and anti-F(R) gravity arises, which causes getting away of the universes from each other. In this theory, a Type-IV singularity occurs at t = t s , which is the time of producing tachyons between expansion and contraction branches.  相似文献   

16.
The results for the corona P n ?°?P1 are generalized, which make it possible to state that P n ?°?P1 is not an ( a, d)-distance antimagic graph for arbitrary values of a and d. A condition for the existence of an ( a, d)-distance antimagic labeling of a hypercube Q n is obtained. Functional dependencies are found that generate this type of labeling for Q n . It is proved by the method of mathematical induction that Q n is a (2 n ?+?n???1,?n???2) -distance antimagic graph. Three types of graphs are defined that do not allow a 1-vertex bimagic vertex labeling. A relation between a distance magic labeling of a regular graph G and a 1-vertex bimagic vertex labeling of G?∪?G is established.  相似文献   

17.
Multi Secret Sharing (MSS) scheme is an efficient method of transmitting more than one secret securely. In (n, n)-MSS scheme n secrets are used to create n shares and for reconstruction, all n shares are required. In state of the art schemes n secrets are used to construct n or n + 1 shares, but one can recover partial secret information from less than n shares. There is a need to develop an efficient and secure (n, n)-MSS scheme so that the threshold property can be satisfied. In this paper, we propose three different (n, n)-MSS schemes. In the first and second schemes, Boolean XOR is used and in the third scheme, we used Modular Arithmetic. For quantitative analysis, Similarity metrics, Structural, and Differential measures are considered. A proposed scheme using Modular Arithmetic performs better compared to Boolean XOR. The proposed (n, n)-MSS schemes outperform the existing techniques in terms of security, time complexity, and randomness of shares.  相似文献   

18.
The algebraic immunity of a Boolean function is a parameter that characterizes the possibility to bound this function from above or below by a nonconstant Boolean function of a low algebraic degree. We obtain lower bounds on the algebraic immunity for a class of functions expressed through the inversion operation in the field GF(2 n ), as well as for larger classes of functions defined by their trace forms. In particular, for n ≥ 5, the algebraic immunity of the function Tr n (x ?1) has a lower bound ?2√n + 4? ? 4, which is close enough to the previously obtained upper bound ?√n? + ?n/?√n?? ? 2. We obtain a polynomial algorithm which, give a trace form of a Boolean function f, computes generating sets of functions of degree ≤ d for the following pair of spaces. Each function of the first (linear) space bounds f from below, and each function of the second (affine) space bounds f from above. Moreover, at the output of the algorithm, each function of a generating set is represented both as its trace form and as a polynomial of Boolean variables.  相似文献   

19.
In this paper, a steganographic scheme adopting the concept of the generalized K d -distance N-dimensional pixel matching is proposed. The generalized pixel matching embeds a B-ary digit (B is a function of K and N) into a cover vector of length N, where the order-d Minkowski distance-measured embedding distortion is no larger than K. In contrast to other pixel matching-based schemes, a N-dimensional reference table is used. By choosing d, K, and N adaptively, an embedding strategy which is suitable for arbitrary relative capacity can be developed. Additionally, an optimization algorithm, namely successive iteration algorithm (SIA), is proposed to optimize the codeword assignment in the reference table. Benefited from the high dimensional embedding and the optimization algorithm, nearly maximal embedding efficiency is achieved. Compared with other content-free steganographic schemes, the proposed scheme provides better image quality and statistical security. Moreover, the proposed scheme performs comparable to state-of-the-art content-based approaches after combining with image models.  相似文献   

20.
We prove that any balanced incomplete block design B(v, k, 1) generates a nearresolvable balanced incomplete block design NRB(v, k ? 1, k ? 2). We establish a one-to-one correspondence between near-resolvable block designs NRB(v, k ?1, k ?2) and the subclass of nonbinary (optimal, equidistant) constant-weight codes meeting the generalized Johnson bound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号