首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
D.J. Ando  D. Bloor 《Polymer》1979,20(8):976-980
To achieve an insight into the systematic effect of changes in end-groups on the polymerization of disubstituted diacetylenes, a series of closely related bis(carboxylic acid) esters of 2,4-hexadiyne-1,6-diol have been synthesized and their thermal and photochemical polymerization studied. Quantitative conversion measurements show that the reactivity rises rapidly as the length of the paraffinic side group increases, reaches a maximum value for the bis(capric acid) ester and then falls steadily, to almost no reaction, for the highest member of the series. Optical and Raman spectroscopy show that at low conversion freshly formed polymer is in equilibrium with the monomer lattice but segregation of the polymer occurs at higher conversion and on annealing at room temperature. This behaviour can be explained in terms of the molecular packing, which is discussed in terms of molecular models.  相似文献   

2.
This study examined ethylene–vinyl acetate (EVA)‐toughened polystyrene (PS). EVA is well‐known to be incompatible with PS; thus, the PS graft to the EVA backbone (EVA‐g‐PS) was used as a compatibilizer and provided good adhesion at the interface of PS and EVA. In addition, the mechanical properties and impact resistance of the PS matrix were obviously improved by EVA‐g‐PS and by EVA itself. Meanwhile, differential scanning calorimetry results showed that the grafted PS chain influenced the crystallization of EVA; for example, the melting temperature, the crystallization temperature, and the percentage crystallinity related to EVA were reduced. Moreover, the addition of 10% EVA increased the impact strength by a factor of five but reduced the modulus by the same factor. Additionally, a lower number‐average molecular weight EVA delayed phase inversion and resulted in poor mechanical properties. A fracture surface photograph revealed that the major mechanism of EVA‐toughened PS was craze and local matrix deformation. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 699–705, 2003  相似文献   

3.
E‐glass and poly(vinyl alcohol) (PVA) fibres were used to produce both homogeneous and hybrid composites with an orthophthalic unsatured polyester resin. Results are presented regarding the tensile and impact behaviour of both intraply and interply hybrid composites, with particular regard to the effects of the plies stacking sequence and the loading direction. With a proper choice of composition and stacking sequence, E‐glass/PVA hybrid composites were proved to achieve a property profile superior to those of homogeneous E‐glass laminates in terms of specific properties. In particular, hybridization with PVA fibres resulted in improving the specific impact energy of E‐glass laminates. Resistance to impact crack propagation was higher for intraply with respect to interply hybrid composites, as evidenced by their ductility index values. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
Physical ageing rates of poly(ethylene terephthalate) have been measured, and ageing is interpreted to be associated with the conventional glass formation process, which occurs at a more rapid rate at higher temperatures. Ageing is accompanied by a marked change in mechanical properties, increased tensile yield stress and drawing stress, more localized yielding of the polymer and a marked decrease in impact strength. The fracture results have been attributed to the increased yield stress and a change in contribution of plane stress and plane strain conditions in the samples. Fracture surfaces show evidence of mixed modes of fracture.  相似文献   

5.
Al(OH)3/polypropylene (PP) composites modified by polypropylene grafted with acrylic acid (FPP) were prepared by melt extrusion. Effect of PP grafting with acrylic acid on mechanical properties and fracture morphology of Al(OH)3/polypropylene composites were investigated. Although incorporation of Al(OH)3 reduced the mechanical properties of PP, addition of FPP increased the mechanical properties of Al(OH)3/PP composites. It is suggested that addition of FPP improve the dispersion of Al(OH)3 and the interfacial interaction between filler and matrix. Mechanical properties of Al(OH)3/FPP/PP composites depend on the grafting rate and the content of FPP. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2617–2623, 2001  相似文献   

6.
In this study, biodegradable blend of Poly (Ethylene‐co‐Vinyl Acetate) (EVA) and Ethyl Cellulose (EC) were prepared. Ethylene vinyl alcohol (EVOH) copolymer was used as an interfacial compatibilizer to enhance adhesion between EVA and EC. The melt blended compatibilized biocomposites were examined for mechanical and thermal properties as per the ASTM standards. It has been found that the EC has a reinforcing effect on EVA leading to enhanced tensile strength and also impart biodegradability. Thus, a high loading of 50% EC could be added without compromising much on the mechanical properties. Analysis of the tensile data using predictive theories showed an enhanced interaction of the dispersed phase (EC) and the matrix (EVA). The compatibilizing effects of EVOH on these blends were confirmed by the significant improvement in the mechanical properties comparable with neat EVA as also observed by SEM microscopy. The TGA thermograms exhibits two‐stage degradation and as EC content increases, the onset temperature for thermal degradation reduces. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
The aim of this work was to better understand the performance of binary blends of biodegradable aliphatic polyesters to overcome some limitations of the pure polymers (e.g., brittleness, low stiffness, and low toughness). Binary blends of poly(ε‐caprolactone) (PCL) and poly(lactic acid) (PLA) were prepared by melt blending (in a twin‐screw extruder) followed by injection molding. The compositions ranged from pure biodegradable polymers to 25 wt % increments. Morphological characterization was performed with scanning electron microscopy and differential scanning calorimetry. The initial modulus, stress and strain at yield, strain at break, and impact toughness of the biodegradable polymer blends were investigated. The properties were described by models assuming different interfacial behaviors (e.g., good adhesion and no adhesion between the dissimilar materials). The results indicated that PCL behaved as a polymeric plasticizer to PLA and improved the flexibility and ductility of the blends, giving the blends higher impact toughness. The strain at break was effectively improved by the addition of PCL to PLA, and this was followed by a decrease in the stress at break. The two biodegradable polymers were proved to be immiscible but nevertheless showed some degree of adhesion between the two phases. This was also quantified by the mechanical property prediction models, which, in conjunction with material property characterization, allowed unambiguous detection of the interfacial behavior of the polymer blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Thermoset materials obtained from styrene/vinyl ester resins of different molecular weights modified with poly(methyl methacrylate) (PMMA) were prepared and studied. Scanning electron microscopy and transmission electron microscopy micrographs of the fracture surfaces allowed the determination of a two‐phase morphology of the modified networks. Depending on the molecular weight of the vinyl ester oligomer, the initial content of the PMMA additive, and the selected curing temperature, different morphologies were obtained, including the dispersion of thermoplastic‐rich particles in a thermoset‐rich matrix, cocontinuous structures, and the dispersion of thermoset‐rich particles in a thermoplastic‐rich matrix (phase‐inverted structure). Density measurements were performed to determine the effect of the PMMA‐modifier concentration and curing temperature on the volume shrinkage of the final materials. The development of cocontinuous or thermoplastic‐rich matrices was not too effective in controlling the volume shrinkage of the studied vinyl ester systems. The evaluation of the dynamic mechanical behavior, flexural modulus, compressive yield stress, and fracture toughness showed that the addition of PMMA increased the fracture resistance without significantly compromising the thermal or mechanical properties of the vinyl ester networks. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
Biodegradable composites were prepared using microcrystalline cellulose (MCC) as the reinforcement and polylactic acid (PLA) as a matrix. PLA is polyester of lactic acid and MCC is cellulose derived from high quality wood pulp by acid hydrolysis to remove the amorphous regions. The composites were prepared with different MCC contents, up to 25 wt %, and wood flour (WF) and wood pulp (WP) were used as reference materials. Generally, the MCC/PLA composites showed lower mechanical properties compared to the reference materials. The dynamic mechanical thermal analysis (DMTA) showed that the storage modulus was increased with the addition of MCC. The X‐ray diffraction (XRD) studies on the materials showed that the composites were less crystalline than the pure components. However, the scanning electron microscopy (SEM) study of materials showed that the MCC was remaining as aggregates of crystalline cellulose fibrils, which explains the poor mechanical properties. Furthermore, the fracture surfaces of MCC composites were indicative of poor adhesion between MCC and the PLA matrix. Biodegradation studies in compost soil at 58°C showed that WF composites have better biodegradability compared to WP and MCC composites. The composite performances are expected to improve by separation of the cellulose aggregates to microfibrils and with improved adhesion. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2014–2025, 2005  相似文献   

10.
β‐Methylglycidyl ethers have been applied to Electrical and Electronic adhesives. However, there is no report about the detailed polymerization behavior and physical properties of their cured products. Hence, we investigated cationic polymerization behavior of bisphenol A di(β‐methylglycidyl) ether (Me‐BADGE) and physical properties of the cured products containing Me‐BADGE. DSC analysis suggested that Me‐BADGE could be cured completely at lower temperature than bisphenol A diglycidyl ether (BADGE). Physical properties were analyzed by dynamic viscoelastic analysis. Glass transition temperature (Tg) of BADGE homopolymer was 194°C. In contrast, the copolymer of BADGE (50 wt %) with Me‐BADGE (50 wt %) showed Tg at 124°C. According to the data of E’ and tan δ, crosslink density of the cured products decreased with increasing the Me‐BADGE content. The analysis of cationic polymerization of monofunctional β‐methylglycidyl ether suggested that the cationic polymerization proceeded not only through oxonium cation but also through carbocation formed by ring‐opening reaction of oxonium cation. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42377.  相似文献   

11.
The properties of urethane acrylate resin mixtures based on the linear and hyperbranched aliphatic polyesters were examined. Linear polyester was synthesized from neopentil glycol and adipic acid. Hyperbranched polyester of the third generation was synthesized from 2,2-bis(hydroxymethyl)propionic acid and di-trimethylol propane. The modification of 60% of hyperbranched aliphatic polyester OH end groups was carried out with isononanoic acid or with soybean fatty acids. Two hyperbranched urethane acrylates, with the same degree of acrylation, and one linear urethane acrylate were obtained by reaction of appropriate polyester and isophorone diisocyanate and 2-hydroxyethyl acrylate. The influence of added amount of HUA and nature of non-acrylic end groups on the rheological, mechanical and thermal properties of the uncured and UV cured mixtures diluted with 20 wt.% hexanediol diacrylate was examined. The nature of non-acrylic end groups have great effect on the interaction between linear and hyperbranched urethane acrylates, which further has a crucial influence on the examined properties of uncured and UV cured mixture samples.  相似文献   

12.
The effects of reprocessing by injection molding on the structure and properties of poly(ether imide) (PEI) were studied. The chemical structure of PEI does not change after reprocessing. However, the weight-average molecular weight decreases after the first and the second injection cycles, after which it stays constant. Despite the harsh conditions used, the thermal resistence and the small strain mechanical properties were unaffected by the application of successive injection molding processes to the 100% regrind PEI specimens. The tensile ductility and energy at break showed a decrease parallel to that of the molecular weight. However, the Izod impact strength was constant, probably due to the differences in strain rate and mode of deformation between the tensile and impact tests. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1601–1607, 1997  相似文献   

13.
In this work, poly(vinyl alcohol) (PVA) and cellulose nanocrystals (CNCs) were crosslinked using sodium tetraborate decahydrate (borax) to improve the mechanical and thermal properties of the neat PVA. The results showed that the CNCs affected the crystallization behavior of the crosslinked PVA. The crystallization temperature of the crosslinked PVA with CNCs increased considerably from ~152 to ~187 °C. The continuous improvement of the thermal stability was observed with the increasing content of CNCs in the crosslinked PVA films. Additionally, the strong interaction between the CNCs and PVA was theoretically estimated from the Young's modulus values of the composites. Thermodynamic mechanical testing revealed that the crosslinked PVA composite films with CNCs could bear higher loads at high temperature compared to the films without the CNCs. At 60 °C, 2.7 GPa was reported for the storage modulus of the crosslinked composites with 3 wt % of CNCs, twice as high as that for the crosslinked films without CNCs. Moreover, creep results were improved when CNCs were added in the crosslinked nanocomposites. The materials prepared in this work could broaden the opportunities for applications in a wide range of temperatures. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45710.  相似文献   

14.
In this article, we report the morphology and thermal, mechanical and physical properties of poly(3‐hydroxybutyrate) (PHB)/curaua composites containing triethyl citrate (TEC) as the plasticizer. The composites were prepared by mechanical mixing using pristine and chemically treated fibers (10 wt %) and TEC (30 wt %) and characterized by differential scanning calorimetry, dynamic mechanical analysis, X‐ray diffraction, small angle X‐ray scattering, polarized optical microscopy, scanning electron microscopy, tensile tests, impact resistance test, thermodilatometry, and thermal conductivity measurements. The curaua fibers acted as nucleating agent and strongly influenced the morphology of the crystalline phase of PHB, increasing the lamella thickness, decreasing the crystal size and inducing spherulite–axialite transition. These characteristics of the PHB crystalline phase determined all the properties of the composites. The tensile properties of the composites were comparable with those of neat PHB, while the impact resistance of composites was comparable with that of plasticized PHB. The higher heat capacity and thermal expansion coefficient and the lower thermal conductivity of the composites compared with neat PHB reflect the morphological changes in the PHB crystalline phase. The strategy of developing a green polymeric material from ecofriendly components exhibiting a good balance of properties by combining curaua fibers, TEC, and PHB was successful. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44676.  相似文献   

15.
Tetrapod zinc oxide whiskers (TZnO‐Ws) were successfully synthesized via a thermal oxidation method and confirmed using Fourier transform infrared spectroscopy, X‐ray diffraction and scanning electron microscopy. A series of poly(urethane acrylate) (PUA)/TZnO‐W composite films with various TZnO‐W contents were prepared via a UV curing method and their physical properties were investigated to understand their possible use as packaging materials. The morphological, thermal, mechanical, antibacterial and barrier properties of the PUA/TZnO‐W composite films were interpreted as a function of TZnO‐W content. The thermal stability, barrier properties and antibacterial properties of the composite films, which were strongly dependent upon their chemical and morphological structure, were enhanced as the TZnO‐W content increased. The oxygen transmission rate and water vapor transmission rate decreased from 614 to 161 cm3 m?2 per day and 28.70 to 28.16 g m?2 per day, respectively. However, the mechanical strength of the films decreased due to the low interfacial interaction and poor dispersion with high TZnO‐W loading. The enhanced barrier properties and good antibacterial properties of the PUA/TZnO‐W composite films indicate that these materials are potentially suitable for many packaging applications. However, further studies are needed to increase the compatibility of polymer matrix and filler. © 2012 Society of Chemical Industry  相似文献   

16.
In this work, 1 wt % carbon monoxide (CO) poly(ethylene‐carbon monoxide) (ECO) copolymer sheets were artificially exposed to ultraviolet (UV) light with a power density of 3 mW/cm2 for up to 130 h. A thorough mechanical characterization of the irradiated material was conducted, in which both the stress–strain data and the values of the quasistatic crack initiation and growth toughness were measured and correlated with companion uniaxial tensile tests and single‐edge‐notched fracture tests. Average values of the elastic modulus, failure strain, and failure stress were determined from the tensile tests. The full‐field optical technique of digital image correlation was used to quantify in‐plane deformation (displacements and displacement gradients) during the fracture experiments and to extract values of the crack initiation and growth fracture toughness. The elastic modulus increased monotonically with UV irradiation for the exposure times used in this investigation. In addition, for low irradiation times of less than 5 h, both the failure strain and failure stress of ECO decreased, and this caused a corresponding decrease in the crack initiation and growth toughness. However, for longer irradiation times, the failure strain remained almost invariable, whereas the failure stress increased by about 25% over that of unirradiated ECO. As a result, for longer irradiation times (>5 h), 1 wt % CO ECO became not only stiffer but also stronger and tougher, as quantified by companion fracture experiments. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 139–148, 2004  相似文献   

17.
D.P. Jones  D.C. Leach  D.R. Moore 《Polymer》1985,26(9):1385-1393
An outline of the characteristics of PEEK and the versatility of its compositional forms (micro and macro composites) are given to illustrate its wide potential for success in engineering applications. Although it is necessary to have particular tabulations of mechanical properties for engineering design, these are seldom available and consequently it is argued that an understanding of stiffness, toughness and strength properties are required to fully exploit available manufacturer's data and thus develop the full potential of PEEK and its composites. Stiffness characteristics are considered in terms of a modulus function which is dependent on time under load and temperature. In its composite forms, whether reinforced with short or continuous fibres, stiffness anistropy can be both considerable and complex, but some empirical ground-rules are apparent. For continuous fibre composites even in the form of complex lay-ups, it is also possible to attempt some stiffness prediction from certain pseudo-elastic constants. Toughness of PEEK and its composites is described in terms of both comparative and intrinsic properties. Instrumented falling weight impact data, particularly as a function of temperature enable some insight into ductile-brittle transitions for the unreinforced material, but crack initiation and crack propagation processes for the various fibre reinforced forms. Intrinsic toughness is described in terms of linear elastic fracture mechanics theory. Strength properties are described for static and dynamic loading configurations. In particular, PEEK and its composites are evaluated for increasing test severities for strength characteristics; stress concentration, loading form and test temperature are considered.  相似文献   

18.
Poly(ester urethane ureas) (PesURUs) and poly(ether urethane ureas) (PetURUs) synthesized from diphenylmethane-4,4′-diisocyanate and poly(butylene adipate) diol, and poly(tetramethylene oxide) diol or poly(propylene oxide) diol, respectively, were hydrolyzed at 70°C for various periods up to 16 weeks. Differences in thermal and mechanical properties of as-received dry samples are correlated with the number and strength of hydrogen bonds formed between urea/urethane groups of hard segments and polyester or polyether groups of soft segments. Gel permeation chromatography measurements show that the molar mass of linear PesURUs markedly decreases with the hydrolysis time, whereas that of linear PetURUs remains almost unaffected. PesURU crosslinked by polymeric isocyanate has lower crystallinity, but shows somewhat better resistance to hydrolysis than its linear counterpart because of its more stable three-dimensional molecular structure. Water uptake at 37°C, dynamic mechanical thermal analysis, and differential scanning calorimetry thermograms determined for redried hydrolyzed specimens concurrently show that advancing hydrolysis accounts for decrease in the crystallinity (if any) of soft polyester segments, in the efficacy of hydrogen bonding and in crosslinking density. Experimental data indicate that hydrolytic resistance of PetURUs is primarily determined by (1) the hydrolytic stability of individual types of present groups, (2) steric hindrances affecting the access of water molecules to these groups, and (3) the hydrophilicity of backbones. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 577–586, 1998  相似文献   

19.
In this article, sheet boehmite (AlOOH), which was synthesized via a facile and environmental friendly method, was used as reinforcing agent to toughen Bisphenol A epoxy resin. The result of X–ray Diffraction (XRD) and IR spectrum indicated that the as–synthesized product was pure crystalline and high purity AlOOH. The effects of sheet AlOOH on the mechanical properties of AlOOH/epoxy nanocomposites were investigated. The results indicated that the introduction of AlOOH significantly improved the mechanical properties of epoxy resin. Compared with neat epoxy resin, the tensile strength and the fracture toughness (KIC) of the AlOOH/epoxy nanocomposites filled with 4 wt % AlOOH increased by 24.2% and 28.7%, respectively, while the flexural strength increased from 40.92 to 50.00 MPa. From Scanning Electron Microscope (SEM), a phase‐separated morphology and plenty of cervices and river branches were observed in the fractured surfaces of composites. With the increase of sheet AlOOH content, river‐shaped cracks became more and more intensive. Overall, the addition of sheet AlOOH is shown as a promising method for mechanical properties enhancement of epoxy matrix. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41409.  相似文献   

20.
B. Eling  S. Gogolewski  A.J. Pennings 《Polymer》1982,23(11):1587-1593
Poly(l-lactic) PLLA fibres with a high degree of molecular orientation and crystallinity were produced by hot-drawing of the melt-spun and solution-spun fibres. Solution-spun fibres show better tensile properties as compared with those of the melt-spun fibres. This may be caused by a lower number of entanglements trapped in the solution-spun fibres. The highest values of the tensile strength found for PLLA fibres in the present study were 0.5 and 1.0 GPa for the melt-spun and solution-spun fibres, respectively. Tensile strength of PLLA fibres increases with the draw ratio, and above a certain molecular weight, also with molecular weight of the polymer. Tensile strength was found to be strongly dependent on the drawing temperature which may be associated with the occurrence of two crystal modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号