首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在常规处理条件下,对西南地区突发性非多砂高浊度原水进行了加药条件优化试验.结果表明,采用单级絮凝、分级沉淀工艺,先投加PAC,60~120 s后投加PAM,对高浊度原水有良好的去除效果.原水浊度为15 000 NTU时,投加200 mg/L PAC、0.4~0.5 mg/L PAM,静沉30 min后.出水浊度为1.7...  相似文献   

2.
为改善砂滤池过滤效果,开展了混凝沉淀后出水二次微絮凝中试试验研究。结果表明:针对南方某自来水厂原水常规水质,当待滤水浊度在4NTU以下,常规絮凝工艺与二次微絮凝工艺对浊度的处理效果相当;当待滤水处于4~9NTU时,二次微絮凝工艺有效降低滤后水的浊度;不论常规絮凝工艺还是二次微絮凝工艺,只要把待滤水浊度控制在1NTU左右,滤后水浊度可以控制在0.1NTU左右;二次微絮凝工艺对TOC与三氯乙醛的处理效果都优于常规絮凝工艺;当二次投加PAC的量为0.3mg/L时,滤后水铝含量远低于国标限值。  相似文献   

3.
通过滤前投加絮凝剂的方式,可降低滤后浊度,同时为明确絮凝剂投加后水质的变化情况,开展了基于颗粒计数的滤池微絮凝生产性试验。结果表明,投加絮凝剂后,滤池进水颗粒物数量明显增加,经过滤后对水体中小颗粒的去除率从不足60%提高到80%以上,颗粒物的数量明显下降,滤池出水浊度降低;絮凝剂投加量为3 mg/L时,较为适宜;投加絮凝剂可抵御原水水质变化,但缩短了滤池运行周期。  相似文献   

4.
以模拟铁超标的水源水作为研究对象,在水厂常规工艺的基础上增加预臭氧工艺,考察了该组合工艺对含铁原水的处理效果。结果表明,常规工艺对铁的去除效果有限;臭氧—沉淀工艺可以有效去除原水中总铁,原水中总铁含量为7.5~8.0 mg/L时,臭氧投加量提高至5 mg/L即可保证出水铁含量达标,但对浊度去除效果差。结合经济性原则,当原水总铁含量为5~8 mg/L时,最佳工艺参数如下:O_3投加量为4 mg/L,PAC投加量为20 mg/L;当原水中总铁含量为8~10mg/L时,最佳工艺参数如下:O_3投加量为5 mg/L,PAC投加量为20 mg/L。  相似文献   

5.
鹿燕 《供水技术》2012,6(3):17-19
针对辛安水厂原水水质问题,通过静态试验考察了不同预氧化方式对混凝沉淀工艺净化效果的影响。结果表明,先投加0.2 mg/L的高锰酸钾,再投加1.0 mg/L的臭氧,可以明显降低混凝沉淀出水中的浊度、UV254及UV254/TOC,相应的去除率分别为85.3%,75.8%和55.9%;为有效控制出水AOC含量,实际运行中可以考虑采用先投加0.4 mg/L的高锰酸钾,再投加0.5 mg/L的臭氧的预氧化方式。  相似文献   

6.
臭氧/过滤/活性炭工艺深度处理污水厂二级出水   总被引:10,自引:1,他引:9  
采用臭氧/过滤/活性炭工艺深度处理济南市水质净化二厂的二级出水.结果表明,在臭氧投加量为3 mg/L、滤床和炭床的滤速均为6~12 m/h、各工艺段的接触时间为13 min的务件下,组合工艺对浊度、CODMn、NH4+-N和NO2--N均有一定的去除效果,而对NO3--N基本无去除作用;当原水的平均浊度、CODMn、NH4+-N和NO2--N分别为0.87 NTU、1.24 mg/L、1.78 mg/L、0.13 mg/L时,组合工艺出水的平均浊度、CODMn、NH4+-N和NO2--N分别可降至0.25 NTU、0.79mg/L、1.29 mg/L、0.05 mg/L.  相似文献   

7.
5.12地震后,绵阳市地表水源水质发生较大变化,浊度逐年呈现上升趋势。2010年,绵阳市某给水厂原水最高浊度达到20170NTU。针对高浊度原水,该给水厂选用聚丙烯酰胺(PAM)与聚合氯化铝(PAC)进行联合投加。在高浊度原水期间,PAM投加量控制在0.1mg/l左右,PAC最高投加量为77.32mg/l。通过对水厂工艺运行参数的适当调整,在高浊度原水情况下取得了较好的处理效果,保证了出厂水水质。  相似文献   

8.
常规工艺对浊度的去除效率及浊度预警水平   总被引:1,自引:0,他引:1  
分析了原水泵站及水厂各工艺单元出水一整年的浊度数据,发现1月-4月的原水浊度较低,如果碱铝投加量低于一定限值(如8.88mg/L)则易造成出水浊度偏高,需要控制混凝剂投加量以保证混凝效果。清水池内浊度容易升高,这可能与滤池初滤水的水质较差有关。根据各工艺单元对浊度的一般去除效率和出厂水浊度标准,提出了原水和工艺单元出水的浊度预警水平,这对于水厂常规工艺的运行具有指导性意义。  相似文献   

9.
在当前原水氨氮日益升高的情况下,优化砂滤池对氨氮的处理效果尤为关键。在原水中投加NaOH和NH4Cl溶液,中试结果表明:投加NaOH溶液后,原水pH值上升至8.5左右,而待滤水pH值只上升至7.6左右;滤后水DO的高低与滤池处理效果呈现一定的正相关。待滤水氨氮为0.91~1.90 mg/L,未投加NaOH溶液时,待滤水pH值在6.80~7.00,砂滤池对氨氮的平均去除率为54.81%;待滤水氨氮为1.25~1.91mg/L,投加NaOH溶液后,待滤水pH值在7.02~7.68之间,砂滤池对氨氮的平均去除率为70.26%。当待滤水氨氮升高至2.0mg/L时,滤后水中没有明显的NO-2-N积累,而当原水水质明显变差,待滤水氨氮升至2.38~3.21mg/L时,氨氮处理效果受到DO影响,NO-2-N有一定的积累。投加NaOH溶液一段时间后,即使待滤水浊度有较大幅度的升高,滤后水浊度均能稳定在0.3 NTU以下,显示出对浊度较好的去除效果。  相似文献   

10.
在原水pH值为6.5~8.5的条件下,采用常规的生活饮用水净化工艺(混凝/沉淀/过滤/消毒),在原水中投加高盐基度(≥85%)的聚氯化铝(PAC)混凝剂,投加量控制在1.0~5.0mg/L(以Al2O3计),控制沉淀水浊度在1.0~3.0 NTU、滤后水浊度≤1.0 NTU,可使净化后饮用水中的残留铝含量在0.05~0.11 mg/L,明显低于《生活饮用水卫生标准》(GB 5749—2006)的铝含量限值(0.2 mg/L),为生活饮用水卫生安全提供了有力保障。另外,与其他铝盐混凝剂相比,采用高盐基度PAC混凝剂净化生活饮用水的药剂成本更低,有利于提高水厂的经济效益和降低居民生活成本。  相似文献   

11.
针对南方某湖泊水源净水厂原水氨氮在0.25~1.00 mg/L的微污染状态下时出厂水中游离氯不稳定的问题,结合水厂处理工艺进行了不同浓度氨氮对游离氯稳定性影响的试验研究。结果表明,当原水氨氮0.20 mg/L时,不影响出厂水游离氯的稳定;采用常规处理工艺、原水氨氮浓度在0.20~0.45 mg/L之间时,或采用常规处理+臭氧/活性炭深度处理工艺、原水氨氮在0.20~0.71 mg/L之间时,可在混凝沉淀前投加次氯酸钠,利用折点前加氯提高氨氮去除效果,使出厂水中游离氯保持稳定;采用常规处理工艺、原水氨氮0.45 mg/L时,或采用常规处理+臭氧/活性炭深度处理工艺、原水氨氮0.71 mg/L时,不能完全通过折点前加氯的方法降低滤后氨氮,滤后会有氯胺生成,可利用氯胺的消毒能力,以总氯控制消毒效果。  相似文献   

12.
二次微絮凝改善过滤效果的试验研究   总被引:1,自引:0,他引:1  
为改善过滤效果,开展了沉后水的二次微絮凝过滤中试研究。结果表明,当聚合氯化铝(PAC)投量为 0. 2mg/L、微絮凝时间为 2~4min时,可确保滤后水浊度<0. 1NTU的目标值。二次微絮凝过滤不仅解决了初滤水浊度偏高的问题,而且提高了对有机物和藻类的去除率,同时滤后水的铝含量没有升高,过滤水头损失也没有明显的增加。  相似文献   

13.
滦河水质季节波动较大,仅采用“混凝-沉淀-过滤-消毒”的常规工艺处理,冬季运行压力较大。以引滦原水为研究对象,采用臭氧预氧化、臭氧深度氧化、活性炭过滤、臭氧/活性炭组合处理等技术对常规工艺进行强化,考察各工艺对浊度、CODMn、UV254等指标的控制能力。结果表明:若要求出水CODMn低于1.0 mg/L,采用1.0 mg/L的后臭氧强化工艺即可实现;若对CODMn的控制要求达到0.85 mg/L,应选用1.0 mg/L的预臭氧强化工艺,但此工艺对UV254的控制能力较后臭氧弱;对浊度而言,活性炭过滤的效果优于两种臭氧强化工艺,炭滤池出水浊度可降至0.12 NTU;最优的出水效果来自1.0 mg/L后臭氧/活性炭组合强化工艺,浊度可降至0.10 NTU以下,CODMn和UV254分别降至0.50 mg/L和0.043 cm-1,可为饮用水厂的提标改造提供技术参考。  相似文献   

14.
研究了微絮凝变孔隙深层过滤处理城市二级出水时,滤料粒径配比、絮凝剂PAC投加量等因素对滤床整体过滤效果的影响。试验结果表明:在混凝荆PAC投加量为6mg/L.滤床细滤料体积比为4%的情况下,系统出水浊度小于0.5NTU,有机污染物COD小于30mg/L,且系统可以较好地克服表面堵塞,发挥整个滤床的过滤作用提高过滤效率。  相似文献   

15.
高锰酸盐复合剂强化混凝除污生产性试验研究   总被引:3,自引:0,他引:3  
针对Z市某水厂机械加速澄清池和滤池运行效果不佳的问题,进行了高锰酸盐复合剂强化混凝除污的生产性试验(处理规模为1.2×104m3/d).研究结果表明,在混凝剂(聚合硫酸铁投量为800 kg/d)投量一定的条件下,投加高锰酸盐复合剂(1.5 mg/L)能显著强化去除水中的浊度、CODMn三氯甲烷生成前质等污染物,并能延长滤池的过滤周期,大大减少了反冲洗耗水量.试验结果还表明,投加高锰酸盐复合剂有效改善了原水浊度剧升所造成冲击负荷的影响,提高了系统的抗冲击负荷能力.  相似文献   

16.
在反粒度生物滤池/臭氧-生物活性炭组合工艺处理微污染水源水过程中,存在反粒度生物滤池初滤水浊度过高,进而影响后续臭氧-生物活性炭工艺稳定运行的情况,针对这一问题进行了反粒度生物滤池初滤水浊度控制研究。以反粒度生物滤池出水浊度1.5 NTU为预设目标,通过直接排放初滤水、延时启动、延时与慢速启动联用、降低运行初期滤速、二次絮凝、延时启动后二次絮凝与慢速启动联用等6种技术措施对反粒度生物滤池出水浊度进行了控制研究。结果表明,直接排放初滤水至出水浊度1.5 NTU需要40 min,初滤水排放量约占每一个运行周期处理水量的1.4%,浪费了大量水资源;另外5种措施对浊度控制有一定效果,其中,延时10 min后缓慢启动并进行二次絮凝(絮凝剂投加量为7 mg/L,投加时间为30 min)工况下,初滤水浊度峰值10NTU,10 min内初滤水浊度可降至1.5 NTU,控制效果较为理想。  相似文献   

17.
龚淑艳  郑君  王晓红 《供水技术》2014,(1):15-18,25
结合生产工艺现状,天津塘沽中法供水有限公司所辖水厂采用二次微絮凝工艺,在原有加药方式基础上增加了沉淀后二次投药点,以期改善过滤效果.结果表明,采用FeCl3作为二次微絮凝混凝剂,在投加量为4 ~6 mg/L的条件下能保证出厂水浊度≤0.2 NTU.在实际应用中,二次微絮凝工艺可使滤后水浊度降低40%,同时制水药剂单耗较一次加药方式可降低18%左右.由于该絮凝方式对滤池的运行周期有较大影响,因此需要加强滤池运行及反冲洗优化管理,以保持水质稳定.  相似文献   

18.
臭氧预氧化强化混凝处理引黄水库水的中试研究   总被引:1,自引:0,他引:1  
针对引黄水库水的特点,采用臭氧预氧化强化常规工艺处理引黄水库水。中试研究结果表明:臭氧预氧化能够降低常规工艺出水浊度,改善对有机物的去除效果,同时提高常规工艺对氨氮和藻类的去除率。适宜的臭氧投加量为1~2mg/L,当臭氧投加量为1mg/L时,臭氧预氧化后,滤后水浊度、CODMn、UV254、氨氮和叶绿素a的去除率,与常规工艺相比分别提高了2.7,2.5,7.8,5.2和4.8个百分点。  相似文献   

19.
针对太原市呼延水厂出水浊度不达标的问题进行了絮凝试验研究.结果表明:该厂原水属低温低浊水,有机胶体较多,絮凝效果差,其根本原因是絮凝剂投量不足.进一步的试验表明:以聚合氯化铝(PAC)为絮凝剂、以活化硅酸为助凝剂,除浊效果较好;活化硅酸的投加时间对絮凝效果有较大的影响,以快速混合用时1min、聚合氯化铝投量为15 mg/L、延迟30 s后投加0.5~1mg/L的活化硅酸(以SiO2,计)为最佳运行条件;滤池反冲洗排水回流至配水井有利于低温低浊水的处理,并可节省絮凝剂或助凝剂的投量.  相似文献   

20.
王福进 《供水技术》2008,2(3):29-30
针对黄河水的低温低浊水质特点,按照水厂实际工艺设计了中试设备.应用基本涡旋理论的栅条混合、强化絮凝网格反应和低脉动斜板沉淀技术对设备作了改进.通过中试优选了混凝剂和助凝剂,并确定了其最佳投药量和投加点.当水厂PAC稀释液投加量为5.77 mg/L,PAM投加量为0.5 mg/L时,沉后水浊度小于0.5 NTU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号