首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Traditionally, the measurement of shrinkage occurring during drying is performed by destructive or poorly accurate techniques such as volume displacement methods. Cracks detection and quantification are realised either by destructive techniques or sophisticated but expensive nondestructive ones (NMR imaging). X-ray microtomography in combination with image analysis provides an accurate, nondestructive and easy to use technique to determine simultaneously shrinkage and crack extent. Results reported in this article concern drying of wastewater sludges whose management will become a real challenge in the years to come. These results show a clear relation between drying kinetics and crack development. This could be related to the development of internal diffusional limitations inducing moisture gradients and mechanical stresses leading to cracks formation.  相似文献   

2.
《Drying Technology》2013,31(7):1695-1708
Abstract

Traditionally, the measurement of shrinkage occurring during drying is performed by destructive or poorly accurate techniques such as volume displacement methods. Cracks detection and quantification are realised either by destructive techniques or sophisticated but expensive nondestructive ones (NMR imaging). X-ray microtomography in combination with image analysis provides an accurate, nondestructive and easy to use technique to determine simultaneously shrinkage and crack extent. Results reported in this article concern drying of wastewater sludges whose management will become a real challenge in the years to come. These results show a clear relation between drying kinetics and crack development. This could be related to the development of internal diffusional limitations inducing moisture gradients and mechanical stresses leading to cracks formation.  相似文献   

3.
A 3D CFD model of the agglomeration of droplets and particles in a counter-current spray-drying process was developed and verified. An original discrete phase model was elaborated, with an agglomeration module taking into account hydrodynamic segregation of particles, droplet coalescence, and droplet shrinkage for accurate calculations of mass balance of the discrete phase. The characteristic drying curves were applied to the model of particle moisture evaporation, which included the coupling of particle agglomeration with heat, mass, and momentum transfer between the discrete and continuous phases. Two agglomeration zones were observed in the tower: wet particle agglomeration in the atomization zone, and “dry agglomeration” above the air inlets, due to the intensive mixing of particle streams. A comparison of the calculated particle size distributions and experimental data obtained from particle dynamics analysis (PDA) measurements proves the accuracy of the developed methodology. The elaborated model allows the final PSD of the powder in the spray towers to be predicted.  相似文献   

4.
Dependency of absorbed power by microwave on the local moisture content in a glass particle layer was measured with a new method; that is, heating the wet layer. The heating experiment was performed using a laboratory-scale combined convective and microwave heater/dryer that was manufactured by modifying a domestic microwave oven at 2.45 GHz. The measured result was strongly dependent on the local moisture content and showed a maximum and a minimum within the measured range of the moisture content. This dependency can be explained by the assumption that moisture in the wet layer behaves as a mass of the free water. The combined drying rate of the wet layer measured with the heater/dryer was simulated with both the power dependency and the experimental convective-only drying rate. Power dependency on temperature is as important as the moisture content in the simulation. Simulated results agree very well with experimental ones.  相似文献   

5.
Plant materials with cellular structure, like fruits and vegetables, are often viewed as porous media in terms of model building of the drying process, on the basis of a hypothesis that all of the moisture of a plant tissue is trapped in a continuous and connected pore network system. However, most of the moisture in the plant tissue is contained naturally in enclosed cells. In the course of drying, the trapped moisture has to cross the cell membranes and then migrates in the extracellular space. Based on this concept, a pore network model for isothermal drying of plant materials was developed in which two stages of moisture movement—transmembrane transfer and extracellular transfer in the pore network—were considered. Finally, the isothermal convective air-drying processes of a potato slice were simulated. The calculated results were validated by the experiments conducted under the simulation conditions.  相似文献   

6.
《Drying Technology》2012,30(15):1771-1785
Advances in the study of the rate processes in spray drying have helped improve product quality. Single droplet drying (SDD) is an established method for monitoring the drying kinetics and morphological changes of an isolated droplet under a controlled drying environment, mimicking the droplet convective drying process in spray drying. To enhance particle quality requires understanding of both the particle formation process and knowledge of how different particle properties are affected by the drying conditions used. The latest development in the SDD technique enables evaluation of these aspects by incorporating a dissolution test in the drying experiment. The experiment is realized by attaching a solvent droplet to a dried/semi-dried single particle in situ and then video-recording the resultant morphological changes. Some of the particle (e.g., crystallinity) properties obtained under different drying conditions can be modelled using the measured droplet drying kinetics. This paper reviews the applications of SDD experiments in measuring the drying kinetics and monitoring the droplet morphological changes during drying. Some examples of extending the glass filament SDD technique to examine particle functionalities are discussed. SDD experiments are shown to be a powerful tool for particle engineering due to its ability to study both the external convective transport process of a single droplet and to understand the different particle functionalities of the resultant single dried particle.  相似文献   

7.
《Drying Technology》2012,30(15):1742-1749
The drying of plant materials with cellular tissue is often viewed as drying of porous media that is assumed to consist of cell cytoskeleton and intercellular space. Various approaches have been reported in the literature to describe heat and mass transfer during drying of such porous materials. However, the fact remains that the water in a cellular tissue is mostly intracellular and it should be driven out of the cells across cell membranes before transporting in cell gaps, as in a general porous media. In the present study, the transport process of moisture in a cellular tissue was analyzed. A mathematical model for moisture transport across the cell membrane was established, which was correlated to a self-developed, dual-scale pore network model (cell and pore network) for drying of plant materials. The relationship between mass volumetric flux and average intracellular moisture content was developed based on the microscopic images and the drying experiments.  相似文献   

8.
9.
Solidified porous slab is formed through convective drying of glass particle layer wetted with aqueous dilute agar gel. Measured critical mean moisture content increases with increasing initial moisture or agar content. The agar gel moves in viscous flow caused by capillary pressure during drying. A new drying model based on the receding evaporation plane model is proposed. Drying period is divided into surface and internal evaporation periods. Wet slab consists of dried and wet zones during the internal evaporation period, while the wet slab consists of wet zone only during the surface evaporation period. In the new model, the evaporation rate from the wet zone in the internal drying period is estimated with the linear driving force (LDF) approximation in the field of adsorption engineering. Critical moisture content, that is, mean moisture content between the surface and internal periods, is estimated with a mass balance on the surface. Simulated results by the new drying model with reasonable fitting parameters agree very well with measured drying data.  相似文献   

10.
《Drying Technology》2013,31(6):1303-1318
Abstract:

Solidified porous slab is formed through convective drying of glass particle layer wetted with aqueous dilute agar gel. Measured critical mean moisture content increases with increasing initial moisture or agar content. The agar gel moves in viscous flow caused by capillary pressure during drying. A new drying model based on the receding evaporation plane model is proposed. Drying period is divided into surface and internal evaporation periods. Wet slab consists of dried and wet zones during the internal evaporation period, while the wet slab consists of wet zone only during the surface evaporation period. In the new model, the evaporation rate from the wet zone in the internal drying period is estimated with the linear driving force (LDF) approximation in the field of adsorption engineering. Critical moisture content, that is, mean moisture content between the surface and internal periods, is estimated with a mass balance on the surface. Simulated results by the new drying model with reasonable fitting parameters agree very well with measured drying data.  相似文献   

11.
This article explores the potential of high-frequency heating combined with convective hot and moist air to dry softwood boards as fast as possible while maintaining a reasonable product quality. High-frequency drying experiments were performed in a multipurpose laboratory prototype. This device and the data logging equipment are briefly described in this article. The results obtained at different HF powers on Abies grandis board are presented and discussed. Our results prove that it is possible to dry a 50-mm-thick board from 150 to 5% in about 10 h while maintaining a good final quality by using air flow at 90°C for both dry-bulb and dew-point temperatures and an average HF power of 77 kW·m?3.  相似文献   

12.
《Drying Technology》2008,26(5):530-536
This article explores the potential of high-frequency heating combined with convective hot and moist air to dry softwood boards as fast as possible while maintaining a reasonable product quality. High-frequency drying experiments were performed in a multipurpose laboratory prototype. This device and the data logging equipment are briefly described in this article. The results obtained at different HF powers on Abies grandis board are presented and discussed. Our results prove that it is possible to dry a 50-mm-thick board from 150 to 5% in about 10 h while maintaining a good final quality by using air flow at 90°C for both dry-bulb and dew-point temperatures and an average HF power of 77 kW·m-3.  相似文献   

13.
The aim of this work was to simulate in two-dimensions the spatio-temporal evolution of the moisture content, the temperature, and the mechanical stress within a highly deformable and water saturated product during convective drying. The material under study was an elongated potato sample with a square section placed in hot air flow. A comprehensive hydro-thermal model had been merged with a mechanical model, assuming a viscoelastic material, a plane deformation, and an isotropic linear hydric-shrinkage of the sample. This model was validated on the basis of the average water content and core temperature curves for drying trials under different operating conditions. The material viscoelastic properties were measured by means of stress relaxation tests at different water contents. The viscoelastic behavior was described by a generalized Maxwell model whose parameters were correlated to water content. The simulations of the spatio-temporal distributions of mechanical stress were performed and interpreted in terms of product potential damage. The sample shape was also predicted all aver the drying process with reasonable accuracy.  相似文献   

14.
The aim of this article is to present a self-consistent mathematical model describing the heat and mass transfer phenomena during the convective drying both in the constant and in the falling drying rate periods. This general model is developed on the basis of the theory of mixtures and the thermodynamics of irreversible processes. The boundary conditions are formulated and the numerical algorithm enabling calculation of the temperature and the drying curves in the two mentioned periods of drying is constructed. In this paper much effort is devoted to the experimental validation of the model. The convective drying of a cylindrical sample made of kaolin was examined both experimentally and numerically for comparison and the distribution of temperature and the drying curves were determined. A very good agreement of the experimental and theoretical results is stated.  相似文献   

15.
An existing network model for isothermal drying of capillary porous media is extended to account for viscosity in the liquid phase so that it is no longer restricted to structures with large pores. Modeling challenges and solution methods are presented in detail. The model is compared with a bundle of capillaries model of drying. Finally, simulation results for two-dimensional pore networks with mono-modal and bimodal pore structure are shown and discussed.  相似文献   

16.
An existing network model for isothermal drying of capillary porous media is extended to account for viscosity in the liquid phase so that it is no longer restricted to structures with large pores. Modeling challenges and solution methods are presented in detail. The model is compared with a bundle of capillaries model of drying. Finally, simulation results for two-dimensional pore networks with mono-modal and bimodal pore structure are shown and discussed.  相似文献   

17.
An Artificial Neural Network Model for Prediction of Drying Rates   总被引:1,自引:0,他引:1  
Drying rate data were generated for training of an ANN model using a liquid diffusion model for potato slices of different thicknesses using air at different velocities, humidities and temperatures. Moisture content and temperature dependence of the liquid diffusivity as well as the heat of wetting for bound moisture were included in the diffusion model making it a highly nonlinear system. An ANN model was developed for rapid prediction of the drying rates using the Page equation fitted to the drying rate curves. The ANN model is verified to provide accurate interpolation of the drying rates and times within the ranges of parameters investigated.  相似文献   

18.
《Drying Technology》2013,31(9):1867-1884
Abstract

Drying rate data were generated for training of an ANN model using a liquid diffusion model for potato slices of different thicknesses using air at different velocities, humidities and temperatures. Moisture content and temperature dependence of the liquid diffusivity as well as the heat of wetting for bound moisture were included in the diffusion model making it a highly nonlinear system. An ANN model was developed for rapid prediction of the drying rates using the Page equation fitted to the drying rate curves. The ANN model is verified to provide accurate interpolation of the drying rates and times within the ranges of parameters investigated.  相似文献   

19.
建立在物质微观传输基础上的孔道网络干燥理论,通过完全离散化的方法在孔道等级上对干燥过程进行研究,描述了多孔介质内部结构参数对干燥过程的影响。介绍了建立孔道网络模型的原理和方法,阐述了基于单元体上孔道网络研究的内容及目的,综述了基于产品等级上孔道网络研究的最新进展,阐明了孔道网络模型方法对干燥理论研究的重要意义。指出,进一步提高网络模型中孔道的拓扑等价性、形状的不规则性及尺寸的相关性,探索网络构建新方法以及增加孔道网络信息量,是孔道网络干燥理论的主要发展方向,并应加强同分形、渗流理论的进一步结合。  相似文献   

20.
ABSTRACT

Yellow dented corn samples were dryed i n the laboratory with heated air i n a batch fluidized bed dryer at three different operation conditions. The evolution o f the temperature nnd moisture content were predicted with both, a model proposed in the literature that neglects the position dependence o f the diffusion coefficient and a modified version o f i t that takes into account the above mentioned functionality. Both models were solved by means of collocation i n finite elements. The consideration o f the diffusivity as a position function leads to better agreement with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号