首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
介绍了等离子增强磁控溅射(PEMS)技术,系统研究了其制备的Ti-si-C-N纳米复合膜层.首先讨论该技术工作原理,并描述了膜层的制备工艺过程.通过SEM、XRD、EDS、纳米压痕、微米压痕及冲蚀试验等研究了膜层性能,发现膜层为纳米复合结构,以非晶SiCxNy为基质,内含4.7~30nm的TiCo.3N0.7纳米晶.膜层硬度高达40GPa,同时研究了Si含量的影响.膜层表现出的耐冲蚀性比基体材料高100倍以上,其韧性对耐冲蚀性影响很大.讨论了溅射工艺参数对膜层微观组织结构、纳米硬度、附着力及耐冲蚀性方面的影响,同时研究了多层膜层.此类膜层有望应用于气轮压缩机及固定式涡轮的严重固体颗粒冲蚀(SPE)和液滴浸蚀(LDE)的防护.  相似文献   

2.
纳米Ti(C,N)增强Ti(C,N)基金属陶瓷的研究   总被引:7,自引:0,他引:7  
采用纳米Ti(C,N)粉末制备Ti(C,N)基金属陶瓷,研究了纳米粉末对金属陶瓷组织及性能的影响。结果表明,粉末冶金过程中,纳米Ti(C,N)粉末易于在粘结相中扩散与溶解及沿晶界分布,降低了硬质相在粘结相中的溶解度,抑制了晶粒长大,提高了材料的红硬性能。抗弯强度与晶粒尺寸满足于Hall-Perch公式,5wt%~l0wt%的纳米粉末加入量可使金属陶瓷的抗弯强度和切削性能得到较大的提高,但硬度变化不大。切削磨损主要表现为磨粒磨损和轻微的粘着磨损,磨痕细小均匀。  相似文献   

3.
目的 提高不锈钢基体的抗固体颗粒冲蚀性能.方法 在不锈钢基体表面,通过等离子体增强磁控溅射系统(PEMS),采用不同偏压工艺制备TiAlVSiCN纳米复合涂层.通过SEM、HRTEM观察涂层的微观形貌与组织,利用XRD、SAD分析涂层的物相组成与晶体结构,并通过划痕仪、纳米硬度计以及冲蚀试验机探究不同工艺涂层的结合强度...  相似文献   

4.
石明  张宁  吴肖  石娜 《热加工工艺》2014,(19):29-32
掘进机截齿堆焊修复要求熔深浅、稀释率小,等离子弧堆焊就具备这一特性。本试验通过对Q235钢板进行Ti(C,N)增强镍基粉末涂层等离子弧堆焊耐磨强化处理,分析堆焊层的金相组织、显微硬度,并对堆焊层和基体材料进行摩擦磨损试验,对比分析经等离子弧堆焊处理后材料的耐磨性,并观察表面形貌,分析磨损机理。以此应用到掘进机截齿的堆焊和修复上,从而防止齿尖过早磨钝和硬质合金头脱落,提高截齿的使用寿命。  相似文献   

5.
采用非平衡反应磁控溅射的方法在Si(100)基片上沉积Ti(C,N)复合膜和不同调制周期、调制比的TiN/Ti(C,N)纳米多层薄膜。薄膜的微观结构和力学性能采用X射线衍射仪(XRD)、显微硬度计进行表征。结果表明,Ti(C,N)复合膜的微观结构和力学性能与掺入C的含量有关;TiN/Ti(C,N)纳米多层膜的微观结构和力学性能与调制周期和调制比有关,其显微硬度在一定的调制周期和调制比范围内出现了超硬现象。Ti(C,N)、TiN/Ti(C,N)均为δ-NaCl面心立方结构;Ti(C,N)复合膜显微硬度提高是因为固溶强化,TiN/Ti(C,N)纳米多层膜硬度的提高主要是共格外延生长在界面处产生的交变应力场。  相似文献   

6.
直流磁控溅射沉积(Ti,Al)N膜的研究   总被引:6,自引:0,他引:6  
蒋生蕊  彭栋梁 《金属学报》1994,30(5):B232-B237
研究了用直流磁控反应性溅射法在Ar+N2气氛中沉积(Ti,Al)N膜的工艺。(Ti,Al)N膜具有比TiN膜高的耐磨性,硬度和高温抗氧化性,AES深度分析表明,由Al的选择性氧化形成的Al2O3保护层,是(Ti,Al)N膜具有优良高温抗氧化性能的原因。  相似文献   

7.
纳米Ti(C,N)基金属陶瓷制备技术研究进展   总被引:1,自引:1,他引:1  
概述了纳米Ti(C,N)基金属陶瓷制备技术的研究进展,重点对纳米陶瓷粉末的团聚与分散、纳米陶瓷粉末的氧含量对性能的影响以及纳米金属陶瓷的烧结技术进行了介绍与探讨。分别介绍了真空烧结、放电等离子烧结、热压烧结以及微波烧结在制备纳米Ti(C,N)基金属陶瓷时的优势,及各自存在的问题,为开发新的适于纳米Ti(C,N)基金属陶瓷的烧结方法及烧结工艺提供了参考。  相似文献   

8.
采用等离子增强磁控溅射技术在H13钢表面制备了TiSiCN、TiSiCON、TiAlSiCN、TiAlSiCON纳米复合涂层,使用扫描电子显微镜,原子力显微镜,X射线衍射仪等研究了涂层的组织和性能,主要讨论了Al、O元素对涂层的显微组织、表面能和高温稳定性的影响。试验结果显示:O元素的加入使涂层致密度降低、表面变得粗糙且产生了少量的柱状组织,但它的加入可以降低涂层的表面能;Al元素的加入能显著降低涂层的表面能,并能提高涂层的耐高温性能。这是因为涂层在高温下没有发生分解,且Al元素在高温下形成致密的氧化膜,阻止了涂层进一步氧化。低表面能、好的耐高温性能是便于铸铝模具脱模,延长其工作寿命最有效的性能指标。  相似文献   

9.
本文介绍了等离子增强磁控溅射技术(PEMS)的基本原理,以及利用该技术所开发的纳米复合结构涂层,这种涂层的微观结构为纳米颗粒的复合材料—TiSiCN涂层,该涂层具有非常高的表面硬度,具有极好的防腐耐磨性能,同时该涂层的厚度可达560μm,且具有非常好的附着力和柔韧性,不易从基材脱落及脆裂。利用等离子增强磁控溅射技术沉积的纳米复合结构涂层性能良好,具有非常广泛的应用前景。  相似文献   

10.
硬质颗粒冲蚀(SPE)是固定式压缩机叶片和风煤气涡轮叶片失效的主要机制,冲蚀不仅降低了涡轮的效率,还减少了其使用寿命。从而,降低了可靠性和有效性,增加了涡轮运行的总成本。在沙漠环境下,SPE尤为严重,甚至会导致事故。为此,提出采用等离子增强磁控溅射技术(PEMS)制备厚氮化物层(TiN,CrN,ZrN)和纳米复合碳氮化物镀层,来解决此类问题。该技术结合了传统磁控溅射和专门产生的等离子体,以获得更高的电流密度。在沉积前和沉积过程中采用重离子轰击的方法,能够有效提高涂层的结合力,并限制柱状组织生长,使得单层的TiN,CrN,及ZrN氮化物层厚度可达80μm,TiSiCN,ZrSiCN碳氮化物层厚度也可达30grn。试样分为两组进行了冲蚀试验,结果表明,TiSiCN镀层表现出了最优异的抗冲蚀性,是裸露不锈钢及Ti-6Al-4V基体的25倍,是其它氮化物层的5-10倍。文中将讨论沉积工艺,通过扫描电镜(SEM),能谱分析仪(EDX),透射电镜(TEM)及x射线衍射仪(XRD)研究镀层微观组织结构,通过纳米压痕试验测试镀层的纳米硬度,进行冲蚀试验测试镀层的耐冲蚀性能。此项技术不仅适用于保护先进的飞机系统中涡轮压缩叶片、轮叶、转子叶片等,同样适用于重载柴油机的液压泵轮及活塞环。  相似文献   

11.
等离子体化学气相沉积Ti—N—C膜的研究   总被引:2,自引:0,他引:2  
用XPS,AES,XRD,SEM及显微硬度计分析和测试了不同成分的等离子体化学气相沉积(PCVD)Ti—N—C膜,并与PCVD一TiN膜比较。认为:Ti—N—C膜优异的耐磨性可归因于高显微硬度及致密的结构。AES及XPS分析结果表明,Ti—N—C与TiN膜表面吸附的氧原子价态不同,其决定因素是膜晶格中是否有足够的碳原子存在。氧吸附态的不同可能导致不同的磨损失效方式。  相似文献   

12.
Ti(C,N)_w/Ti(C,N)基金属陶瓷的组织与力学性能研究   总被引:1,自引:0,他引:1  
向阳开  徐智谋 《硬质合金》2006,23(3):129-133
采用Ti(C,N)晶须和颗粒复合粉末(Ti(C,N)w+Ti(C,N)p)制备Ti(C,N)w/Ti(C,N)基金属陶瓷。研究了复合粉末对金属陶瓷组织及性能的影响。结果表明,Ti(C,N)w的加入,金属陶瓷的各项力学性能都得到了提高。组织表现为环形相结构特征,与Ti(C,N)基金属陶瓷相比,双层环形相结构所占比例增大,且尺寸加厚。烧结组织中Ti(C,N)w的长径比大于临界长径比,在强化金属陶瓷方面起着重要的作用。环形相使Ti(C,N)w与基体界面结合紧密,增韧机制主要表现为裂纹桥联和裂纹偏转,拔出效应不明显。  相似文献   

13.
以45钢、钛铁、生铁等为主要原料,在大气环境下、利用中频感应电炉、通过添加含氮附加物、采用原位反应铸造法制备了Ti(C,N)颗粒增强铁基复合材料。研究了所制备复合材料的油润滑摩擦磨损性能、干摩擦磨损性能以及冲击磨料磨损性能。结果表明,在有润滑和无润滑条件下的干摩擦,复合材料的耐磨性能都远大于正火45钢;在中、低冲击工况下,复合材料磨料磨损性能优于高锰钢和高铬铸铁。  相似文献   

14.
本实验选用Na2O-Al2O3-SiO2-B2O3系统作为基础陶瓷结合剂体系,向陶瓷玻璃料中分别加入2%、4%、6%、8%质量分数的纳米Ti(C,N)制得纳米陶瓷结合剂。采用CMT4504型电子多功能试验机、LCP-1差热膨胀仪和Stemi 2000-C金相显微镜等测试分析仪器,分别对不同含量纳米Ti(C,N)的结合剂进行抗折强度、差热分析、显微结构分析和流动性等性能检测,分析不同含量纳米Ti(C,N)对结合剂的影响。结果表明:加入2%、4%、6%、8%质量分数的纳米Ti(C,N)后,陶瓷结合剂流动性范围为179.80%~193.33%,抗折强度为33.55~116.38 MPa。其中,加入6%质量分数纳米Ti(C,N)陶瓷结合剂的性能最佳,抗折强度比基础陶瓷结合剂增加了39.92 MPa,流动性增大了22.9%,综合性能得到改善。   相似文献   

15.
等离子喷涂WC颗粒增强Ni基涂层组织及抗冲蚀性能   总被引:1,自引:1,他引:1  
采用等离子喷涂工艺制备WC颗粒增强Ni基涂层,分析了涂层的显微组织,并对其抗冲蚀磨损性能进行了测试。结果表明,涂层呈层片状结构,有一定孔隙,WC颗粒在涂层中分布均匀,且与母相结合良好。随着冲蚀角度的增大,涂层冲蚀磨损质量损失先增大后减小,表现为塑性-脆性复合冲蚀磨损特征。  相似文献   

16.
采用真空热压工艺制备了添加纳米ZrO2和微米WC的Ti(C,N)基纳米复合金属陶瓷材料,并研究了材料的力学性能与微观结构。结果表明:在纳米ZrO2添加量为5%、微米WC添加量为9.6%(质量分数,下同)时,Ti(C,N)基纳米复合金属陶瓷材料的综合力学性能较好,抗弯强度为1014MPa,断裂韧性为7.25MPa·m1/2,硬度为15.57GPa,其抗弯强度和断裂韧性比未添加纳米ZrO2与微米WC的Ti(C,N)基金属陶瓷材料分别提高了3.5%和18.1%。材料断裂模式为以穿晶断裂为主的穿晶/沿晶断裂混合模式。"晶内型"纳米结构弥散增韧、纳米ZrO2相变增韧以及裂纹桥联、裂纹偏转是其主要的增韧补强机理。  相似文献   

17.
本文以不同N/C原子比的Ti(C,N)固溶体为硬质相,通过真空烧结制备了Ti(C,N)基金属陶瓷。用三点弯曲法、洛氏硬度计、压痕法分别测得试样的抗弯强度、硬度、断裂韧性,并通过光学金相显微镜、XRD、SEM、EDS等手段研究了Ti(C,N)固溶体的N/C原子比对Ti(C,N)基金属陶瓷组织的影响规律。结果表明:在一定范围内随着N/C原子比的增大,Ti(C,N)固溶体在液相中溶解度下降,环形相的析出受到抑制,使得金属陶瓷的硬质相芯部逐渐细化且分散均匀,环形相厚度减薄。但Ti(C,N)固溶体的N/C原子比为6∶4及以上时,硬质相与液相之间的润湿性较差,使得金属陶瓷孔隙度增加,显微组织中开始出现亮白色的晶粒。随N/C原子比的增大,金属陶瓷的抗弯强度和硬度先增大后降低,断裂韧性逐渐降低。当Ti(C,N)固溶体的N/C原子比为5∶5时,金属陶瓷的综合力学性能最佳,其抗弯强度为2 429 MPa,硬度为92.2 HRA,断裂韧性为8.44 MPa·m~(1/2)。  相似文献   

18.
对国内外近年来有关Ti(C,N)基金属陶瓷材料的显微结构与性能的研究成果进行了总结。首先,介绍了Ti(C,N)基金属陶瓷材料的发展史;Ti(C,N)基金属陶瓷的显微结构、力学性能,以及显微结构与其性能的关系等。其次,列举并比较了不同的烧结方法所制备的Ti(C,N)基金属陶瓷材料的力学性能;结果表明:微波烧结和放电等离子烧结技术在较低的温度就可以成功烧结高硬度、高抗弯强度与断裂韧性高的产品,但实际生产中,这类技术还没有广泛被应用,应用最广的是真空烧结方法。最后介绍了Ti(C,N)基金属陶瓷材料的今后的研究趋势。  相似文献   

19.
系统研究了添加纳米级Al2O3的含量对Ti(C,N)基金属陶瓷力学性能和显微结构的影响。结果表明:纳米Al2O3的添加可大幅提高Ti(C,N)基金属陶瓷的力学性能,特别是硬度和断裂韧性明显提高,克服了Ti(C,N)基金属陶瓷硬度较低的缺点,扩大了其应用范围。通过对微观结构观察和分析,可以看出,纳米Al2O3的添加细化了基体的晶粒,主要断裂模式为穿晶断裂,晶粒的细化和断裂模式的改变是材料力学性能提高的主要原因。  相似文献   

20.
李丽  吴卫  张尧成 《表面技术》2010,39(5):92-94
研究在磁控溅射工艺中工作压强和溅射时间恒定的情况下,溅射电流的变化对钛膜与基底Gd结合能力的影响.通过拉伸法测量薄膜与基体间的附着强度,利用扫描电镜观察Ti膜表面形貌.结果表明:溅射电流达到3 A时,Ti膜表面平整,与基体的结合力最强.由此说明,溅射电流的变化对钛膜与基底Gd结合能力的影响较大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号