首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins were isolated from deoiled cakes (DOC) of soybean, castor and rapeseed. The isolated proteins were then blended with LDPE in different wt. ratios, using PEG400 as a plasticizer. The morphology of the blends was evaluated by using a scanning electron microscope (SEM). Homogeneous blends were obtained and analyzed for various mechanical properties such as tensile strength, impact strength, hardness and % elongation and compared with properties of plastic sheets prepared from mixture of pure proteins. Results revealed that protein composition and amount of LDPE in proteins and LDPE blend, affects the mechanical properties of the plastic compositions considerably.  相似文献   

2.
Blends of Linear low density polyethylene (LLDPE) and Poly dimethyl siloxane rubber (PDMS) are immiscible due to dissimilarity in their structures and wide difference in their surface energies. The processing parameters such as temperature, rotor speed and time in an internal mixer (Brabender Plasticorder) were optimized by using Design of Experiments (DOE) as per Taguchi Methodology, for a blend ratio of 50:50. Mechanical properties such as tensile strength and impact strength were chosen as the criteria for assessing the optimization phenomenon. The optimum processing parameters were found to be a temperature of 200°C, a rotor speed of 100 rpm and the time as 8 minutes.  相似文献   

3.
In this work, polyhexene-1 (PH-1) is synthesized by polymerization of hexane-1 with Ziegler–Natta catalyst and melt blended with low-density polyethylene (LDPE). The phase morphology, rheology, crystallization, and thermal behavior of (LDPE)/PH-1 blends are investigated. A good compatibility is observed in the blends up to 10?wt% PH-1 and the most of the droplets in the fractured surface are covered with and buried in the LDPE matrix and at higher percentage the droplet particle size significantly increased. The effect of microstructure of the blends on the flow behavior is studied by small amplitude oscillation rheology. By decreasing the compatibility and increasing the particle size, the Cole–Cole plots are deviated from the semi-circular shape at higher percentages than 10?wt% of PH-1. The change in the crystallization and melting behavior of LDPE in the blends are studied by differential scanning calorimetry and X-ray diffraction (XRD). It is found that by increasing the PH-1 the melting temperature of LDPE decreased from 112.5 to 110.8°C and crystallization temperature increased from 95.2 to 97.7°C which is evident of the nucleation effect. The intensity of (110) peak in XRD test declined as a remake of amorphous part of LDPE and the degree of crystallinity of LDPE decreased from 28 to 22% at 20?wt% PH-1.  相似文献   

4.
The effect of electron beam irradiation, EPDM blending, and Azodicarbonamide (ACA) concentration on the foaming properties of LDPE sheet was investigated. The studied properties are foaming degree, cell densities, mechanical properties and thermal decomposition properties. The data showed that the increasing of foaming agent (ACA) concentration reduces the mechanical properties and increases the gel content. Also, electron beam irradiation has a clear effect on increasing the cell density, mechanical properties gel content and thermal properties of irradiated samples when compared with unirradiated samples. EPDM blending with LDPE at a concentration of 20% reduces the doses required to obtain the foaming degree (71.4%) from 50 kGy in LDPE to 5 kGy in LDPE/EPDM (80/20%). This effect may be attributed to enhancement of radiation cross-linking for LDPE by blending with the amorphous polymer (EPDM).  相似文献   

5.
《国际聚合物材料杂志》2012,61(1-2):331-346
Abstract

Blend prepared by melt mixing of thermoplastic material-elastomer have gained considerable attention in recent years. Heat shrinkability of the polymer which depends on elastic memory can be introduced into the system in the form of an elastomeric phase. The present study deals with the measurement of heat shrinkability of the blend of grafted polyethylene with CSM. Interchain crosslinking between grafted polyethylene and elastomer improves the shrinkability. Crystallinity of the polymer blends also affected by interchain crosslinking, thus affecting the shrinkability. Probable interactions of the rubber and plastic phase are confirmed by IR spectroscopy. Extraction of the elastomeric phase is restricted due to interchain crosslinking as confirmed by SEM study.  相似文献   

6.
高分子共混物的相结构对力学性能的影响   总被引:1,自引:0,他引:1  
本文以聚丙烯 尼龙1010(PP PA1010)共混体系为模型研究了高分子共混物的微观相结构对宏观力学性能的影响,并通过微观力学模型来预测共混物的拉伸强度。通过光散射试验和扫描电镜结果讨论了两相平均弦长比(L1 L2)以及分散相的质心相关距(D)与拉伸性能的关系。结果表明,当分散相一定时,拉伸强度随两相相对尺寸的增大和分散相颗粒相关性的减弱而减小。理论计算的分散相最小体积分数与相形貌观察的结果非常接近,添加增容剂的体系,由于改善了界面粘合,使理论预测值与试验结果很好的吻合。  相似文献   

7.
茂金属聚乙烯弹性体mPE增韧改性聚丙烯的研究   总被引:12,自引:0,他引:12  
本研究工作用茂金属聚乙烯弹性体mPE代替代表的弹性体,对PP的增专改性进行了研究,探讨了共混工艺参数和橡逆比对共混物力学性能的影响;并对不同的弹性体的增韧效果做了对比研究,结果表明,与传统的弹性体相比,mPE增韧改性的PP显示出卓越的低温性能和加工性能;另外用扫描电子显微镜(SEM)对共混物相态结构及断裂形貌进行了分析研究。  相似文献   

8.
介绍了聚膦腈共混物的热稳定性、阻燃性、气体渗透性、光导电性、尺寸稳定性和调控降解速度性能,并对其发展前景进行了展望。  相似文献   

9.
The effects of PE-g-MA as a compatibilizer in binary blends of 70/30 high-density polyethylene/epoxidized natural rubber (HDPE/ENR) have been investigated by means of mechanical analysis and scanning electron microscopy. The special emphasis was given to the role of PE-g-MA in inducing interactions between HDPE and ENR. It has been observed that increasing the amount of PE-g-MA in the blend increases the tensile strength, elongation at break, and impact strength. It is believed that the degree of cross-link increased, which led to improve the interaction between the HDPE and ENR. The optimum stress values are shown in the blend containing 6% PE-g-MA. Scanning electron micrographs (SEM) of the samples also indicated that the addition of compatibilizer decreases the domain size of the dispersed phase. Well-dispersed plastic particles in a rubber matrix were strongly indicated in these samples. The results obtained reveal that the addition of PE-g-MA in HDPE/ENR blend led to an increase in the homogeneity of the blends.  相似文献   

10.
姚培培  李琛 《塑料科技》2013,41(5):66-70
介绍了聚乙烯(PE)薄膜老化机理,并对PE薄膜进行了人工加速紫外光老化试验。分析了老化时间对PE薄膜力学性能的影响。结果表明:紫外光的照射使PE的化学键发生交联和断裂反应,其中断裂反应占主导,使聚合物分子量减小,物理性能下降;PE薄膜的拉伸强度、断裂伸长率和弹性模量随老化时间的延长而降低;PE薄膜抵抗破坏的能力在老化60 h以上会急剧下降,而此时弹性模量的变化趋势变得平缓,断裂伸长率与老化时间近似成线性关系递减。  相似文献   

11.
mPE弹性体/PP共混物的流变行为与力学性能   总被引:5,自引:0,他引:5  
用茂金属聚乙烯弹性体(mPE)代替传统的弹性体,对聚丙烯(PP)进行增韧改性,绘制了不同配比mPE/PP共混物熔体的流变曲线,讨论了共混物的组成,切应力和剪切速率以及温度对熔体流变行为,熔体粘度的影响。测定了共混物熔全的非牛顿指数,熔体质量流动速率及力学性能,为mPE共混改性PP提供了理论依据。结果表明,mPE适用于PP的增韧改性,增韧效果取决于共混物中mPE的用量,当mPE质量分数达到25%-40%时,共混材料既有较高的拉伸强度和韧性,又有较好的加工性能,mPE/PP共混物熔体的假塑性流动随mPE用量的增加向更高切应力或更高剪切速率方向移动。  相似文献   

12.
Novatein thermoplastics from bloodmeal (NTP) were blended with linear low‐density polyethylene (LLDPE) using maleic anhydride grafted polyethylene (PE‐g‐MAH) as compatibilizer. The compatibilizing effect on mechanical, morphology, thermal properties, and water absorption were studied and compared with blends without compatibilizer. The amount of polyethylene added was varied between 20 and 70% in NTP with addition of 10% compatibilizer. An improvement in compatibility between NTP and LLDPE was observed across the entire composition range and the difference were more pronounced at higher NTP contents where the tensile strength of blends was maintained and never dropped below that of pure NTP. Theoretical models were compared to the results to describe mechanical properties. A finely dispersed small particles of NTP in compatibilized blends were observed using SEM. Improved compatibility has restricted chain movement resulting in slightly elevated Tg revealed by DMA. On the other hand, water absorption of the hydrophilic NTP has been decreased when blending with hydrophobic LLDPE. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1890–1897, 2013  相似文献   

13.
ABSTRACT

The effect of rubber content of poly (acrylonitrile butadiene styrene) (ABS) on compatibility and properties of polycarbonate (PC)/ABS blend systems has been investigated. The rheological, mechanical, physical, and thermal properties of PC/ABS blend systems containing ABS of different rubber content were studied. The reduced torque data on Torque Rheocord indicated improved processability of PC by addition of ABS, however, in ABS-rich compositions, higher rubber content reduces the extent of improvement. The tensile strength of PC decreased with addition of ABS to it but PC-rich compositions have a nearly additive response. The deviation form additivity for blends having higher rubber ABS was more pronounced. However, the impact strength of blends having higher rubber ABS were higher than other types and showed a positive deviation from additivity with variation in compositions. The blends containing ABS with lower rubber content showed a single glass-transition temperature (Tg) in differential scanning calorimetry studies (DSC) in the whole composition range indicating miscibility. Although two Tgs, one associated with PC phase and one with ABS phase, were observed for blends containing high rubber ABS, the shift in Tgs with respect to pure component values indicates partial miscibility. The decrease in the extent of shift with increase of ABS in these blends indicates undesirable phase separation due to poor adhesion of higher level of rubber content.  相似文献   

14.
NR and Polyethylene (PE) were blended at different compositions of PE, like 00, 35, 50, 65, 85 and 100% by extrusion method and then the blend films were made by hot press. The blends, NR and PE films were irradiated and their mechanical properties were investigated before and after leaching. Blend compositions were optimized and found that the 50–65% PE blends give the best quality. It is also found that 5–8 kGy radiation doses are optimal for improved properties of blends. Leaching enhances mechanical properties and lower radiation doses give more enhanced mechanical properties compared to unleached one.  相似文献   

15.
Blends of chlorobutyl rubber (CIIR) with two grades of ethylene-propylene diene monomer rubber (EPDM) were prepared and the effect of blend ratio on the cure characteristics, hot air ageing resistance, steam ageing resistance, and mechanical properties were evaluated. The blend of CIIR with EPDM grade 301 T showed additive behavior and the blend with the other grade of EPDM (NDR 4640) showed synergistic behavior.  相似文献   

16.
The effects of polypropylene-graft-maleic anhydride compatibilizer on the mechanical thermal and morphological properties of polyoxymethylene/polypropylene blends were investigated. Polyoxymethylene/polypropylene blends with and without polypropylene-graft-maleic anhydride compatibilizer were prepared by an internal mixer. The morphology of polyoxymethylene/polypropylene blends clearly demonstrated a two-phase separation of dispersed phase and the matrix phase and the addition of polypropylene-graft-maleic anhydride changed the morphological characteristics of blends. Polyoxymethylene/polypropylene blends showed the decrease of mechanical properties with increasing of polypropylene content. The addition of polypropylene-graft-maleic anhydride improved Young’s modulus and storage modulus of polyoxymethylene/polypropylene blends. The incorporation of polypropylene improved the degradation temperature of polyoxymethylene.  相似文献   

17.
In the presence of multiwalled carbon nanotubes (MWCNT), polar nitrile-butadiene rubber (NBR) and nonpolar ethylene propylene diene rubber (EPDM) blends were prepared following a melt mixing method. For the preparation of MWCNT filled EPDM/NBR blends, two mixing methods were used: direct mixing and the masterbatch dilution method. Various physical, mechanical, and morphological properties are explored to elucidate the dispersion behavior of MWCNTs. It was concluded that the preparation method influences the dispersion of the nanotubes in different rubber phases and the properties of these blends are controlled by the degree of dispersion of the nanotubes in the two phases.  相似文献   

18.
The selective wetting behavior of silica in emulsion styrene butadiene rubber (ESBR)/solution styrene butadiene rubber (SSBR) blends is characterized by the wetting concept, which is further developed for filled blends based on miscible rubbers. It is found that not only the chemical rubberfiller affinity but also the topology of the filler surface significantly influences the selective filler wetting in rubber blends. The nanopore structure of the silica surface has been recognized as the main reason for the difference in the wetting behavior of the branched ESBR molecules and linear SSBR molecules. However, the effect of nanopore structure becomes more significant in the presence of silane. It is discussed that the adsorption of silane on silica surface constricts the nanopore to some extent that hinders effectively the space filling of the nanopores by the branched ESBR molecules but not by the linear SSBR molecules. As a result, in silanized ESBR/SSBR blends the dominant wetting of silica surface by the tightly bonded layer of SSBR molecules causes a low‐energy dissipation in the rubber–filler interphase. That imparts the low rolling resistance to the blends similar to that of a silica‐filled SSBR compound, while the ESBRrich matrix warrants the good tensile behavior, i.e., good abrasion and wear resistance of the blends.

  相似文献   


19.
We examined the correlation of wear effects with dielectric properties of carbon nanofibers (CNFs; untreated and organosilane-treated)-reinforced high-density polyethylene (HDPE) composites. Wear testing for the nanocomposites over up to 120 h was carried out, and then, dielectric permittivity and dielectric loss factor of the polymer composites with the increased wear time were studied. Scanning electron microscope and optical microscope observations were made to analyze the microstructure features of the nanocomposites. The results reveal that there exist approximate linear relationships of permittivity with wear coefficient for the nanocomposites. Composites containing silanized CNFs with the sufficiently thick coating exhibited high wear resistance. The change in permittivity was more sensitive to the increased wear coefficient for the nanocomposites with lower wear resistance. This work provides potential for further research on the application of dielectric signals to detect the effects of wear process on lifetime of polymeric materials.  相似文献   

20.
Summary The effect of vibration frequency and vibration amplitude on the microstructure and mechanical properties of high-density polyethylene (HDPE) sheets, obtained through electromagnetic dynamic plasticating extruder, were studied systematically. The mechanical properties, characterized by tensile and impact strengths, have been tested along the flowing and transverse directions (MD&TD). The mechanical tests show that the tensile strength and impact toughness, especially in TD, were much improved under the reciprocating axial vibration. Differential scanning calorimetry (DSC), scanning electron microcopy (SEM) and wide angle X-ray diffraction (WAXD) were executed to analyze the microstructure of the samples. The results indicate that the vibration extrudate has higher crystallinity, perfect crystallite, and strong inter-spherulite ties, which account for enhancement of the mechanical properties of sheets, compared to conventional static extrusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号