首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Uranyl ion (UO22+) sorption properties of polyelectrolyte composite hydrogels made by the polymerization of acrylamide (AAm) with 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPS) and clay such as bentonite (Bent) were investigated as a function of composition to find materials with swelling and uranyl ion sorption properties. Highly swollen AAm/AMPS hydrogels and AAm/AMPS/Bent composite hydrogels were prepared by free radical solution polymerization in aqueous solutions of AAm with AMPS as co‐monomer and two multifunctional crosslinkers such as ethylene glycol dimethacrylate (EGDMA) and 1,4 butanediol dimethacrylate (BDMA). Swelling experiments were performed in water at 25°C, gravimetrically. The influence of AMPS content in hydrogels was examined. Uranyl ion adsorption from aqueous solutions was studied by batch sorption technique at 25°C. The effect of uranyl ion concentration and mass of AMPS on the uranyl ion adsorption were examined. Finally, adsorption capacity (the amount of sorbed uranyl ion per gram of dry hydrogel) (q) was calculated to be 0.67 × 10−3–2.11 × 10−3 mol uranyl ion per gram for the hydrogels. Removal effiency of uranyl ions (RE%) was changed range 9.05–29.92%. The values of partition ratio (Kd) of uranyl ions was calculated to be 0.10–0.43 for AAm/AMPS hydrogels and AAm/AMPS/Bent composite hydrogels, respectively. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

2.
Uranyl ion adsorption from aqueous solutions has been investigated by chemically cross-linked polyelectrolyte acrylamide/maleic acid (CAMA) hydrogels. CAMA hydrogels with various compositions were prepared from ternary mixtures of acrylamide (A), maleic acid (MA), and water by free radical polymerization in aqueous solution using multifunctional cross-linkers such as ethylene glycol dimethacrylate (EGDMA) and 1,4-butanediol dimethacrylate (BDMA). Uranyl ion adsorption from aqueous solutions was studied by batch sorption technique at 25°C. The effect of uranyl ion concentration and mass of adsorbent on the uranyl ion adsorption were examined. In the experiments of the sorption, L type sorption in the Giles classification system was found. Some binding parameters such as initial binding constant (K i ), equilibrium constant (K), monolayer coverage (n), site-size (u), and maximum fractional occupancy (Ô) for CAMA hydrogel-uranyl ion binding system were calculated by using Langmuir linearization method. Finally, the amount of sorbed uranyl ion per gram of dry hydrogel (q) was calculated to be 3.29 × 10?4 ? 15.87 × 10?4 mol uranyl ion per gram for CAMA hydrogels. Adsorption of uranyl ion was changed range 8.17–48.10%.  相似文献   

3.
Summary Swelling equilibrium of polyelectrolyte copolymer gels containing of acrylamide (AAm) and 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPS) have been studied as a function of copolymer composition. AAm/AMPS hydrogels were prepared by free radical solution polymerization in aqueous solution of AAm with AMPS as anionic comonomer and two multifunctional crosslinkers such as ethylene glycol dimethacrylate (EGDMA) and trimethylolpropane triacrylate (TMPTA). Swelling experiments were performed in water at 25 °C, gravimetrically. The influence of AMPS content in hydrogels was examined. Swelling of AAm/AMPS hydrogels was increased up to 1018% (for containing 2% AMPS and crosslinked by EGDMA) 15246% (for containing 8% AMPS and crosslinked by TMPTA), while AAm hydrogels swelled up to 804% (crosslinked by TMPTA)–770% (crosslinked by EGDMA). The values of equilibrium water content of the hydrogels are 0.8851–0.9935. Diffusion behavior was investigated. Water diffusion into hydrogels was found to be non-Fickian in character.  相似文献   

4.
In this study, uranyl ion adsorption from aqueous solutions has been investigated by chemically crosslinked acrylamide/sodium acrylate (CASA) hydrogels. Adsorption studies were investigated by the spectroscopic method. CASA hydrogels with various compositions were prepared from ternary mixtures of acrylamide (A), sodium acrylate (SA), and water by free radical polymerization in aqueous solution, using multifunctional crosslinkers such as ethylene glycol dimethacrylate (EGDMA). Uranyl ion adsorption from aqueous solutions was studied by the batch sorption technique at 25°C. The effect of uranyl ion concentration and mass of adsorbent on the uranyl ion adsorption were examined. In experiments of sorption, L‐type sorption in the Giles classification system was found. Some binding parameters, such as initial binding constant (Ki), equilibrium constant (K), monolayer coverage (n), site‐size (u), and maximum fractional occupancy (Ô) for the CASA hydrogel–uranyl ion binding system, were calculated using the Langmuir linearization method. Finally, the amount of sorbed uranyl ion per gram of dry hydrogel (q) was calculated to be 4.44 × 10?4–14.86 × 10?4 mol uranyl ion per gram for CASA hydrogels. Adsorption of uranyl ion (percentage) was changed within a range of 12.86–46.71%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 200–204, 2007  相似文献   

5.
Acrylamide/mesaconic acid (AAm/MA) hydrogels were prepared by free radical solution polymerization in aqueous solution of acrylamide (AAm) with mesaconic acid (MA) as comonomer and two multifunctional crosslinkers such as ethylene glycol dimethacrylate (EGDMA) and 1,4‐butanediol dimethacrylate (BDMA). Swelling experiments were performed in water at 25°C, gravimetrically. The influence of mesaconic acid content in hydrogels was examined. Swelling of AAm/MA hydrogels was increased up to 2301% (for containing 20 mg MA and crosslinked by EGDMA) to 3296% (for containing 80 mg MA and crosslinked by BDMA), while AAm hydrogels swelled up to 1330% (crosslinked by BDMA) to 1400% (crosslinked by EGDMA). The values of equilibrium water content of the hydrogels are 0.9301–0.9706. Diffusion behavior was investigated. Water diffusion into hydrogels was found to be non‐Fickian in character. Diffusion coefficients of AAm/MA hydrogels were calculated by the short time approximation and found to be from 38.01 × 10?6 cm2 s?1 to 182.73 × 10?6 cm2 s?1. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2253–2259, 2005  相似文献   

6.
A semi-interpenetrating network (semi-IPNs) hydrogel, composed of acrylamide (AAm) with 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) as co-monomer, with poly(ethylene glycol) (PEG) and two multifunctional cross-linkers such as 1,4-butanediol dimethacrylate (BDMA), and trimethylolpropane triacrylate (TMPTA) was prepared. AAm/AMPS hydrogels and AAm/AMPS/PEG semi-IPNs were synthesized by free radical solution polymerization. Swelling experiments were performed in water at 25°C, gravimetrically. For sorption of Toluidin Blue (Basic Blue 17, TB) into AAm/AMPS hydrogels and AAm/AMPS/PEG semi-IPNs was studied by batch sorption technique at 25°C. Dye removal capacity, removal effiency and partition coefficient of the hydrogels was investigated.  相似文献   

7.
Macroporous hydrogels were prepared with acrylamide (AM) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) as well as with anhydrous dextrose (AD) as porogen by crosslinking with N,N1-methylenebisacrylamide (MBA). The chemical structure of hydrogels is characterized by Fourier transform infrared (FTIR) spectroscopy. Morphological studies done by scanning electron microscopy (SEM) showed the macroporous nature of the hydrogels. Swelling studies of hydrogels were done in distilled water, in aqueous NaCl solution and in different pH solutions. In addition, drug release studies of selected macroporous hydrogels (DAMPS1, DAMPS4, DAMPSM1 and DAMPSM3) are also investigated.  相似文献   

8.
It remains challenging to develop stretchable and self-healable polymer electrolytes with improved ion-conductive nature for high-performance multifunctional flexible supercapacitors. Herein, a P(AM-SBMA-AMPS)-SiO2 zwitterion-containing polyelectrolyte hydrogel is fabricated via copolymerization of acrylamide (AM), sulfobetaine methacrylate (SBMA) zwitterionic monomer, and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) anionic monomer grafted from the surface of vinyl silica nanoparticles (VSNPs). The hydrogen bonding among polymer chains and the high-density dynamic ionic interactions between SBMA and AMPS work as reversible “sacrificial bonds” to toughen hydrogel, while the VSNPs function as multifunctional crosslinkers and stress transfer centers, which makes these hydrogels tough (fracture energy 2.7 MJ m−3), stretchable (fracture strain 4,016%), and self-healable (fracture strain of healable sample 775%). More importantly, this zwitterion-containing polyelectrolyte hydrogel exhibits high ionic conductivities (3.4 S m−1) owing to the highly hydration capacity of the zwitterionic polyelectrolyte copolymer which produced efficient ion migration channels for ion transport. Accordingly, a flexible supercapacitor based on this multifunctional hydrogel as electrolyte demonstrates a high electric double-layer capacitive capacitance of 60.6 F g−1 at 0.5 A g−1 and excellent capacitance retention of ~98% over 1,000 cycles as well as encouraging electrochemical properties at subzero temperature. This work provides new insights into the synthesis of highly conductive and multifunctional polyelectrolyte hydrogels for high-performance flexible supercapacitors. © 2020 Wiley Periodicals, Inc.  相似文献   

9.
A novel type of highly swollen hydrogels based on acrylamide (AAm) with 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPS) and clay such as bentonite (Bent) crosslinked by 1,4‐butanediol dimethacrylate (BDMA) was prepared by free radical solution polymerization in aqueous media. Water uptake and dye sorption properties of polyelectrolyte AAm/AMPS hydrogels and AAm/AMPS/Bent composite hydrogels were investigated as a function of composition to find materials with swelling and sorption properties. FTIR analyses were made. Swelling experiments were performed in water and dye solution at 25°C, gravimetrically. Highly swollen AAm/AMPS and AAm/AMPS/Bent hydrogels were used in experiments on sorption of water‐soluble monovalent cationic dye such as Lauths violet “LV, (Thionin).” Swelling of AAm/AMPS hydrogels was increased up to 1,920–9,222% in water and 867–4,644% in LV solutions, while AAm hydrogels swelled 905% in water and swelling of AAm/AMPS/Bent hydrogels was increased up to 2,756–10,422% in water and 1,200–3,332% in LV solutions, while AAm/Bent hydrogels swelled 849% in water. Some swelling kinetic and diffusional parameters were found. Water and LV diffusion into hydrogels was found to be non‐Fickian in character. For sorption of cationic dye, LV into AAm/AMPS and AAm/AMPS/Bent hydrogel was studied by batch sorption technique at 25°C. The amount of the dye sorbed per unit mass removal effiency and partition coefficient of the hydrogels was investigated. The influence of AMPS content in the hydrogels to sorption was examined. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

10.
Poly(N‐vinyl 2‐pyrrolidone‐g‐citric acid) (PVP‐g‐CA) hydrogels with varying compositions were prepared from ternary mixtures of N‐vinyl 2‐pyrrolidone–citric acid–water by using 60Co γ‐rays. The effect of gel composition on the uranyl ions adsorption capacity of PVP‐g‐CA hydrogels was investigated. Uranyl adsorption capacity of these hydrogels were found to be in the range of 18–144 mg [UO]/g dry gel from the aqueous solution of uranyl nitrate and 22–156 mg [UO]/g dry gel from the aqueous solution of uranyl acetate, depending on the content of citric acid in the hydrogel, while poly(N‐vinyl 2‐pyrrolidone) hydrogel did not sorb any uranyl ion. The swelling of PVP‐g‐CA hydrogel containing 2.7 mol % CA was observed in water (1620%), in uranyl acetate solution (1450%) and in uranyl nitrate solution (1360%), as compared to 700% swelling of pure PVP hydrogels. The diffusion coefficients were varied from 12.57 up to 4.04 • 10−8 m2 s−1. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1037–1043, 2000  相似文献   

11.
《分离科学与技术》2012,47(1):172-178
In this article, we report the mechanism and kinetics of adsorption of uranyl ions on starch-based functional hydrogels. The hydrogels were prepared from starch in native or hydrolyzed/oxidized form by crosslinking with N,N-methylenebisacrylamide. The hydrogels synthesized from the oxidized starch have carboxylic groups at C-6 position. The effect of the structure and external environmental factors, i.e., contact time, temperature, ion strength, and simulated seawater (0.55 M NaCl and 3 mM NaHCO3), was investigated on the uranyl adsorption behavior of hydrogels. The adsorption of uranyl ions was rapid as the highest adsorption was observed after 6 h and at 40°C. The sorbents also exhibited appreciable ion uptake even from the simulated seawater. The equilibrium data was analyzed using Langmuir and Freundlich adsorption isotherms and pseudo-first order and pseudo-second order kinetic models. Evidence of adsorption was obtained by characterization of the uranyl ions-loaded hydrogels by FTIR spectroscopy and also by elution with 0.1 N HCl.  相似文献   

12.
A series of hydrogels were prepared from acrylamide and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) monomers with 0–80 mol % AMPS and using N,N′-methylenebis(acrylamide) as the crosslinker. The swelling capacities of hydrogels were measured in water and in aqueous NaCl solutions. The volume swelling ratio qv of hydrogels in water increases sharply when the mole fraction fc of AMPS increases from 0 to 0.06. At higher values of fc from 0.06 up to 0.18, no change in the swelling capacities of hydrogels was observed; in this range of fc, qv becomes nearly constant at 750. However, as fc further increases, qv starts to increase again monotonically over the entire range of fc. At a fixed value of fc, the swelling ratio of hydrogels decreases with increasing salt concentration in the external solution. The results of the swelling measurements in aqueous salt solutions were compared with the predictions of the Flory–Rehner theory of swelling equilibrium. It was shown that the theory correctly predicts the swelling behavior of hydrogels up to 80 mol % charge densities. The method of estimation of the network parameters was found to be unimportant in the prediction of the experimental swelling data. The network parameters used in the simulation only correct the deficiency of the swelling theory. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 567–575, 1998  相似文献   

13.
《分离科学与技术》2012,47(20):3747-3760
Abstract

In this study, adsorptions of uranyl ions from two different aqueous uranyl solutions by acrylamide-itaconic acid hydrogels were investigated by a spectroscopic method. The hydrogels were prepared by irradiating with γ-radiation. In the experiment of uranyl ions adsorption, Type II adsorption was found. One gram of acrylamide-itaconic acid hydrogels sorbed 178–219 mg uranyl ions from the solutions of uranyl acetate, 42–76 mg uranyl ions from the aqueous solutions of uranyl nitrate, while acrylamide hydrogel did not sorb any uranyl ion. For the hydrogel containing 40 mg of itaconic acid and irradiated to 3.73 kGy, swelling of the hydrogels was observed in water (1660%), in the aqueous solution of uranyl acetate (730%), and in the aqueous solution of uranyl nitrate (580%). Diffusions of water onto hydrogels were a non-Fickian type of diffusion, whereas diffusions of uranyl ions were a Fickian type of diffusion.  相似文献   

14.
Cation exchange polymer particles have been synthesized for urinalysis to monitor levels of strontium-90 (90Sr) exposure in humans. Two techniques were utilized in the incorporation of a Sr2+ selective chelating agent, di-tert-butyl-cyclohexano-18-crown-6 (DtBuCH18C6). The ion imprinting technique involved entrapment of DtBuCH18C6 during the formation of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) polymer particles. In the surface immobilization technique, adsorption of DtBuCH18C6 onto the surface of AMPS polymer particles was assisted by a molecular modifier. Ethylene glycol dimethacrylate (EGDMA) and divinylbenzene (DVB) were evaluated as cross-linking agents to provide better support for DtBuCH18C6. These polymer particles were characterized by scanning electron microscopy, dynamic light scattering, and Fourier transform infrared spectroscopy. Radiometric binding assays demonstrated that surface immobilization, in comparison to matrix imprinting, achieved greater Sr2+ uptake. Application of the surface immobilized particles in urinalysis was successful, attaining 86 ± 2% 90Sr uptake at pH 9.  相似文献   

15.
In the present article, we report two well-characterized hydrogels for the adsorption of uranyl ions from 5% NaCl solution. The hydrogel was synthesized by free radical initiation from acrylamide and acrylic acid using N,N-methylenebisacrylamide as crosslinker. In order to improve ion uptake performance, the hydrogel was hydrolyzed to partially convert some of the amide groups into carboxylate groups. The uranyl ion adsorption was studied as a function of hydrogel structure, uranyl ions concentration, pH, temperature, and mass of hydrogel. The partially hydrolyzed hydrogel exhibited the maximum uranyl ion uptake of 236.6 mgg−1 in 480 min at 45 °C and at pH 13. Good reproducibility of results was observed and the evidence of sorption at the optimum pH and ion concentration was obtained by comparison of FTIR spectra of the precursor and uranyl ions loaded hydrogels. The performance of both the hydrogels was found to be higher than that of a commercial resin, Amberlite IRC-718. The experimental data shows good match with Langmuir and Freundlich isotherms and pseudo-first order kinetics.  相似文献   

16.
Adsorption properties of copolymers of acrylamide and mesaconic acid (CAME) in aqueous Basic Blue 12 (Nile blue chloride) solution have been investigated. Chemically crosslinked CAME hydrogels with various compositions were prepared from ternary mixtures of acrylamide (A), mesaconic(ME) acid, and water by free radical polymerization in aqueous solution, using a multifunctional crosslinker such as ethylene glycol dimethacrylate (EGDMA). Dynamic swelling tests in water was applied to the hydrogels. Weight swelling ratio (S) values have been calculated. Sorption of Basic Blue 12 (BB 12) onto CAME hydrogels was studied by batch sorption technique at 25°C. In the experiments of the sorption, L type sorption in the Giles classification system was found. Some binding parameters such as initial binding constant (Ki), equilibrium constant (K), monolayer coverage (n), site‐size (u), and maximum fractional occupancy (Ô) for CAME hydrogels‐BB 12 binding system were calculated by using Klotz, Scatchard, and Langmuir linearization methods. Finally, the amount of sorbed BB 12 per gram of dry hydrogel (q) was calculated to be 2.28 × 10?6–7.91× 10?6 mol BB 12 per gram for hydrogels. Sorption % was changed range 16.09–58.86%. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 405–413, 2006  相似文献   

17.
A novel series of copolymer hydrogels of 2-(dimethylamino)ethylacrylate (DMAEA)/2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) were prepared by solution free radical polymerization at different feed monomer mol ratios. The monomer reactivity ratios were determined by Kelen–Tüdös method. According to that, the monomer reactivity ratios for poly(DMAEA-co-AMPS) were r1 = 0.125 and r2 = 2.85, (r1 × r2 = 0.356). The effect of reaction parameters, including the concentration of cross-linking reagent N,N′-methylene-bis-acrylamide (MBA) and initiator ammonium persulfate (APS), the monomer concentration, pH, temperature, salt solutions, and solvent polarity on the water absorption have been also studied. The hydrogels achieved water-absorption values of 430 g of water/g of xerogel for the copolymer 1:2 richest in AMPS moiety. This copolymer is also very stable to the temperature effect. The optimum pH for the copolymers is 7. Aqueous solutions of the copolymers showed lower critical solution temperature behaviour (LCST). The phase transition temperatures of aqueous solutions of these copolymer increased with increasing of hydrophilic AMPS unit content in the copolymers. The glass transition temperature (Tg) of hydrogels showed a decrease by increasing of comonomer DMAEA content.  相似文献   

18.
In this study, swelling behavior of polyelectrolyte poly(hydroxamic acid) (PHA) hydrogels have been investigated in aqueous thiazin dye solutions. PHA hydrogels were prepared by free radical polymerizations of acrylamide with some cross-linkers such as N,N′ methylenebisacrylamide (NBisA) and ethylene glycol dimethacrylate (EGDMA); then they were used in experiments on swelling and diffusion of some water-soluble cationic dyes such as methylene blue (MB), thionin (T), and toluidin blue (TB). Swelling experiments were performed in water at 25°C, gravimetrically. The equilibrium swelling percent (S%) values of PHA hydrogels were calculated as 238–2705%. Some swelling kinetic parameters such as initial swelling rate, swelling rate constant, and maximum (theoretical) swelling percent were found. Diffusional behavior of dye solutions was investigated. Dye diffusion into hydrogels was found to be non-Fickian in character. Diffusion exponent (n) is over 0.50. For sorption of thiazin cationic dyes, MB, T, and TB to PHA hydrogels were studied by batch sorption technique at 25°C. PHA hydrogels in the dye solutions showed the dark coloration. In the experiments of the adsorption, S-type adsorption in the Giles classification system was found.  相似文献   

19.
Oguz Okay  Selda Durmaz 《Polymer》2002,43(4):1215-1221
The mechanical behavior of a series of strong polyelectrolyte hydrogels based on acrylamide and 2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS) was investigated. The hydrogels were prepared at a fixed crosslinker ratio and monomer concentration, but at various charge densities, i.e. AMPS contents between 0 and 100 mol%. The elastic modulus of the hydrogels after their preparation first increases with increasing charge density but then decreases continuously. Investigation of the swollen state properties of the hydrogels shows existence of a large number of ionic groups inside the gel that are ineffective in gel swelling. The results indicate two opposite effects of charged groups on the elastic modulus of the hydrogels: formation of multiplets acting as additional crosslinks in the gel increases the elastic modulus of ionic hydrogels, whereas the effect of the electrostatic interaction of charged groups on elastic free energy decreases the modulus.  相似文献   

20.
Summary   Poly(hydroxamic acid) (PHA) hydrogels, obtained from the synthesis of crosslinked poly(acrylamide) (PAAm) gels have been prepared, and their uranyl ion binding properties from two different sources were investigated. Swelling and binding parameters of crosslinked PHA gels were determined from swelling and uranyl ion adsorption studies. The effect of uranyl ion concentration, pH, temperature and mass of adsorbent on the uranyl ion adsorption were examined. The binding process between PHA and uranyl ions complies with the S type adsorption according to Giles classification. Free energies of the adsorptions found as negative values indicating spontaneous adsorption process. The structure and hydrophilicity of the used crosslinkers, the ionogenity of PHA polymers and the source of uranyl ions found to be effective on the swelling and binding behaviors of PHA hydrogels. Received: 3 March 2001 / Revised version: 30 June 2001 / Accepted: 9 July 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号