首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polypropylene (PP) matrix calcium alginate fiber reinforced unidirectional composites (10% fiber by weight) were fabricated by compression molding. Tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM), and impact strength (IS) were found to be 26 MPa, 950 MPa, 38 MPa, 1320 MPa, and 20 kJ/m2, respectively. Degradation tests of composites were performed for 6 weeks in soil and it was found that composites retained almost 75% of its original strength. The interfacial properties of the composite were investigated by using single fiber fragmentation test (SFFT) and by scanning electron microscope (SEM).  相似文献   

2.
Composites (50 wt% fiber) of jute fiber reinforced polyvinyl chloride (PVC) matrix and E-glass fiber reinforced PVC matrix were prepared by compression molding. Mechanical properties such as tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM) and impact strength (IS) of both types of composites was evaluated and compared. Values of TS, TM, BS, BM and IS of jute fiber/PVC composites were found to be 45 MPa, 802 MPa, 46 MPa, 850 MPa and 24 kJ/m2, respectively. It was observed that TS, TM, BS, BM and IS of E-glass fiber/PVC composites were found to increase by 44, 80, 47, 92 and 37.5%, respectively. Thermal properties of the composites were also carried out, which revealed that thermal stability of E-glass fiber/PVC system was higher. The interfacial adhesion between the fibers (jute and E-glass) and matrix was studied by means of critical fiber length and interfacial shear strength that were measured by single fiber fragmentation test. Fracture sides after flexural testing of both types of the composites were investigated by Scanning Electron Microscopy.  相似文献   

3.
Jute fabrics such as reinforced polyvinyl chloride (PVC), polypropylene (PP), and a mixture of PVC and PP matrices-based composites (50 wt% fiber) were prepared by compression molding. Tensile strength (TS), bending strength (BS), tensile modulus (TM), and vbending modulus (BM) of jute fabrics' reinforced PVC composite (50 wt% fiber) were found to be 45 MPa, 52 MPa, 0.8 GPa, and 1.1 GPa, respectively. The effect of incorporation of PP on the mechanical properties of jute fabrics' reinforced PVC composites was studied. It was found that the mixture of 60% PP and 40% PVC matrices based composite showed the best performance. TS, BS, TM, and BM for this composite were found to be 65 MPa, 70 MPa, 1.42 GPa, and 1.8 GPa, respectively. Degradation tests of the composites for up to six months were performed in a soil medium. Thermo-mechanical properties of the composites were also studied.  相似文献   

4.
Jute fiber mat (hessian cloth) reinforced PET-based composites (50% fiber by weight) and E-glass fiber matreinforced PET based composites (50% fiber by weight) were fabricated by compression molding and the mechanical properties tensile strength (TS), tensile modulus (TM), elongation at break (%), bending strength (BS), bending modulus (BM), impact strength (IS) and hardness (Shore-A) of the composites were evaluated and compared. The interfacial properties of the both composites were also compared. Water uptake test and soil degradation test were also investigated.  相似文献   

5.
Jute fabrics (50%)-reinforced linear low density polyethylene (LLDPE) composite was prepared by compression molding and mechanical properties were studied. Gelatin fiber (2%–10%) was incorporated into the jute fabrics-based composites and their mechanical properties were investigated and compared with the control composite. It was found that with the increased of gelatin fiber content in the jute fabrics-based composites, the mechanical properties were found to be decreased, but water uptake and degradation properties were increased significantly. The composite containing 10% gelatin fiber lost 30.2% of its weight, 56.4% TS, 41.8% BS, 26% TM and 25.5% BM after 24 weeks in soil medium.  相似文献   

6.
Jute (Hessian cloth) reinforced polymer composites were prepared with a mixture of 2-hydroxy ethyl methacrylate (HEMA) and aliphatic urethane diacrylate oligomer (EB-204), and then cured under gamma radiation. Thick pure polymer films (2 mm thickness) were prepared by using the same monomer and oligomer at different weight ratios, and 500 krad of total gamma radiation dose at 600 krad/hr was selected for the curing of all composites. Total radiation dose, jute content, and monomer concentration were optimized with the extent of mechanical properties. Among all resulting composites, the composite of 38% jute content at monomer:oligomer = 50:50 (w/w) ratios showed the better mechanical properties, such as 108% increase in tensile strength (TS), 58% increase in bending strength (BS), 138% increase in tensile modulus (TM), and 211% increase in bending modulus (BM) relative to pure polymer film. The gel content values were also found to increase with the increase of jute content in the composite. But the elongation at break (Eb) for both tensile and bending was found to decrease with increasing jute content. The best mechanical properties were obtained when jute fibers were pre-irradiated with UV radiation, such as 150% increase in TS, 90% increase in BS relative to polymer film, 19% increase in TS, and 15% increase in BS relative to untreated jute-based composites. A water uptake behavior investigation of the resulting composites was also performed and composites based on UV-treated jute showed the minimum water uptake value.  相似文献   

7.
Jute fabric (hessian cloth) reinforced low-density polyethylene (LLDPE) composites (40 wt%) and solid natural rubber-(NR) based composites (40 wt%) were fabricated by compression molding. Tensile strength (TS), tensile modulus (TM) and percentage elongation at break (Eb) of jute/LLDPE composites were found to be 29, 680 MPa and 20%, and for jute/NR-based composites were also found to be 15, 122 MPa and 94%, respectively. Interfacial shear strength (IFSS) of the jute/LLDPE and jute/NR systems was investigated by using the single fiber fragmentation test (SFFT). Scanning electron microscopy (SEM) and aqueous degradation tests were also performed.  相似文献   

8.
Hybrid composites of rice straw (Rs)/seaweed (Sw) and polypropylene (PP) were prepared at a fixed filler ratio of 30:70 and variable ratio of the two reinforcements, viz. 30:0, 25:5, 20:10, 10:20, 0:30 by weight. Mechanical properties of the composites such as tensile strength (TS), bending strength (BS), impact strength (IS) and elongation at break (Eb%) were investigated and the composite formulation of 20:10:70 (Rs:Sw:PP) was found to be optimum that showed TS = 2.8 MPa, BS = 68 N/mm2, IS = 2.5 kJ/mm2 and Eb = 50%. For better compatibility, Rs and Sw were subjected to surface treatment using various intensities of γ-radiation to prepare improved hybrid composites. γ-irradiated filler hybrid composites significantly enhanced mechanical properties and the composite in which fillers were irradiated at 100 krad achieved maximum enhancement with TS = 35 MPa, BS = 75 N/mm2, IS = 2.7 kJ/mm2 and Eb = 68%. Water absorption capacity of the different composites was also studied and irradiated filler composites showed less water uptake.  相似文献   

9.
Abstract

Bioblends are composites of at least one biodegradable polymer with a non-biodegradable polymer. Successful development of bioblends requires that the biodegradable polymers be compatible with other component biodegradable/synthetic (non-biodegradable) polymers. Bioblends from LLDPE and gelatin were prepared by extrusion and hydraulic heat press technique. The gelatin content in the bioblends was varied from 5 to 20 wt%. Various physico-mechanical properties such as tensile, bending, impact strength (IS), thermal ageing and soil degradation properties of the LLDPE/gelatin bioblends with different gelatin contents were evaluated. The effect of thermal ageing on mechanical properties was studied. The mechanical properties such as tensile modulus (TM), bending strength (BS), bending modulus (BM) were found to increase with increasing gelatin content up to 20 wt%, however tensile strength (TS) and elongation at break (%E b) were decreased with increasing gelatin content. Impact strength value increased with increasing gelatin content up to 10 wt% and then decreased slightly with increasing gelatin content. The blend containing 20 wt% gelatin showed relatively better mechanical properties than other blends. The values of TS, TM,%E b, BS, BM and IS for the bioblend with 20 wt% gelatin content are 5.9MPa, 206.3MPa, 242.6%, 12.1MPa, 8 MPa and 13.7 J/cm2, respectively. Water uptake increases with increasing soaking time in water and weight loss due to soil burial also increases with increasing gelatin content in the blends but both are significantly lower than that of pure gelatin sheet. Weight loss values after thermal ageing increase with time, temperature and increasing gelatin content in the blend but are much lower than pure gelatin. Mechanical properties such as TS, TM are increased and %E b is decreased after thermal ageing at 60°C for 30 min. Consequently, among all of the bioblends prepared in this work the blend having 20% gelatin content yields properties such that it can be used as a semi-biodegradable material.  相似文献   

10.
Abstract

Jute fiber (Hessian cloth) reinforced low-density polyethylene (LDPE) composites were prepared by heat press molding techniques. The mechanical properties such as tensile strength (TS), bending strength (BS), and elongation at break of the composites were studied. The enhancement of TS (33%) and BS (50%) were obtained as a result of reinforcment jute fabrics in LDPE. In order to improve the mechanical properties and adhesion between jute and LDPE, hessian cloth were each treated with 2-hydroxyl ethyl methacrylate (HEMA). The HEMA-treated jute composite showed higher tensile and bending strength compared to untreated jute composite and LDPE. Dielectric properties like dielectric constant and loss tangent (tan δ) of jute, LDPE and composites were studied. Ferro to paraelectric phase transition occurred in both treated and untreated jute composites containing more than 20% jute. Water uptake behaviors of the composite were monitored and HEMA-treated composite showed lower water absorption behavior. The adhesion nature of jute and LDPE also characterized by scanning electronic microscopy (SEM), better adhesion was observed between HEMA-treated jute and LDPE over untreated ones.  相似文献   

11.
Chitosan films were prepared by casting from its 1% (w/w) solution. Tensile strength (TS), tensile modulus (TM), and elongation at break (Eb%) of chitosan films were found to be 30 MPa, 450 MPa, and 8%, respectively. Silane monomer (3-aminopropyl tri-methoxy silane) (1–7%, w/w) was added into the chitosan solution (1%, w/w), and films were casted. The highest TS (38 MPa) and TM (620 MPa) values were found at 5% (w/w) silane content films. Polycaprolactone (PCL) films were prepared by compression molding; the values of TS, TM, and Eb of PCL films were found to be 12 MPa, 226 MPa, and 70%, respectively. Using chitosan and silane containing chitosan films, PCL-based tri-layer films were prepared by compression molding. Chitosan (also silane-incorporated chitosan) content in the tri-layer films varied from 10 to 50% by weight. The values of TS and TM of the silane containing composites were found to be 21 and 410 MPa, respectively, which is significantly higher (40% TS and 34% TM) than control composites. Molecular interactions due to silane addition were supported by FT-IR analysis. The surface of the films and the interface of the tri-layer films were investigated by scanning electron microscope (SEM). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
Gelatin films were prepared by casting. Tensile strength (TS), elongation at break (Eb) and tensile modulus (TM) of the gelatin films were found to be 56 MPa, 6.1% and 1.14 GPa, respectively. Effect of gamma radiation (Co-60) on the mechanical properties of the gelatin films was studied. Vinyltrimethoxysilane (VTMS) was added to the gelatin during casting varying 1–7% by weight and found to increase the TS and TM significantly. Then the films were irradiated and found further increase of TS and TM. Water uptake of the gelatin films and 5% VTMS containing gelatin films were also evaluated.  相似文献   

13.
Rice straw (Rs)/polypropylene (PP) composites were prepared in the different ratio of 5 : 95, 10 : 90, 15 : 85, 20 : 80, 25 : 75, and 30 : 70 (Rs wt % : PP wt %) by an injection molding process. This work investigated the tensile strength (TS), bending strength (BS), and impact strength (IS) of the composites. From the results, it is observed that Rs20 : PP80 mixture composite showed better performance with mechanical properties (TS = 26.2 MPa, BS = 58 N/mm2, and IS = 1.7 KJ/mm2) among the composites prepared. Two hybrid composites were also fabricated using 20% Rs, 10% seaweed with 70% PP and 20% Rs, 30% seaweed with 70% PP. In between the two hybrid composites, superior mechanical behavior showed by the hybrid composite in ratio of Rs20 : Sw10 : PP70 with enhanced results such as TS = 28 MPa, BS = 68 N/mm2, and IS = 2.5 KJ/mm2. Water uptake, simulating weathering, and soil degradation test of different composites were also performed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
聚乙烯醇-海藻酸钙制备的影响因素   总被引:1,自引:0,他引:1  
聚乙烯醇-海藻酸钙具有弹性好、柔韧性好和含水率高等优点。探讨了戊二醛用量、聚乙烯醇与海藻酸钠质量比、CaCl2质量分数、戊二醛与聚乙烯醇的反应时间对复合材料含水率的影响。实验结果表明当戊二醛质量分数为0.85%、聚乙烯醇与海藻酸钠质量比为8:1左右、CaCl2溶液质量分数达2%、戊二醛与聚乙烯醇的反应时间为1.5h时,复合材料的含水率最高,拉伸强度和扯断伸长率也都是最高的,其含水率达80.6%,拉伸强度达9.08MPa,扯断伸长率为400%。  相似文献   

15.
Jute fabrics/gelatin biocomposites were fabricated using compression molding. The fiber content in the composite varied from 20–60 wt%. Composites were subjected to mechanical, thermal, water uptake and scanning electron microscopic (SEM) analysis. Composite contained 50 wt% jute showed the best mechanical properties. Tensile strength, tensile modulus, bending strength, bending modulus and impact strength of the 50% jute content composites were found to be 85 MPa, 1.25 GPa, 140 MPa and 9 GPa and 9.5 kJ/m2, respectively. Water uptake properties at room temperature were evaluated and found that the composites had lower water uptake compared to virgin matrix.  相似文献   

16.
The effect of reinforcing boron nitride nanosheets (BNNSs) on the mechanical properties of an amorphous borosilicate glass (BS) matrix was studied. The BNNSs were prepared using liquid exfoliation method and characterised by transmission electron microscopy, scanning electron microscopy and X-ray diffraction (XRD) analysis. The average length was ~0.5?μm, and thickness of the nanosheets was between 4 and 30 layers. These BNNSs were used to prepare BS-BNNS composite with different loading concentrations of 1, 2.5 and 5 mass-% (i.e. 1.395, 3.705 and 7.32 vol.-%). Spark plasma sintering (SPS) was used to densify these composites to avoid structural damages to the BNNSs and/or crystallisation within the composite sample during high temperature processing. The BNNSs were found to be evenly distributed in the composites matrix and were found to be aligned in an orientation perpendicular to the direction of the applied force in SPS. The mechanical properties including fracture toughness, flexural strength and elastic modulus were measured. Both fracture toughness and flexural strength increased linearly with increasing concentration of BNNSs in BS glass. There was an enhancement of ~45% in the fracture toughness (1.10?MPa.m1/2) as well as flexural strength (118.82?MPa) with the addition of only 5 mass-% loading of BNNSs compared to BS glass (0.76?MPa.m1/2; 82.16?MPa). The toughening mechanisms developed in the composites because of the reinforcement of BNNSs were thoroughly investigated.  相似文献   

17.
本文研究了粉煤灰掺量对基体强度、聚乙烯醇(PVA)纤维/水泥基体间界面作用以及无表面修饰PVA纤维应变硬化水泥基复合材料(SHCC)拉伸性能的影响。结果表明,随着粉煤灰掺量的增加,基体的28 d抗压强度在18~93 MPa内呈下降趋势。单轴拉伸试验结果表明,掺入20%(质量分数,下同)和50%粉煤灰对SHCC的影响不明显,随着粉煤灰掺量增至67%和80%,SHCC的多微缝开裂和应变硬化特征呈增强趋势,极限应变值也相应增大,最高达7.2%,并且具有轻质特性。单纤维拔出试验结果显示,高掺量粉煤灰不仅可以降低PVA纤维与基体间的化学黏结作用,还能减弱界面摩擦作用,从而有效抑制了PVA纤维在拔出过程中出现过早断裂,显著提高了无表面修饰PVA纤维SHCC的延展性。  相似文献   

18.
In this study, tri-layered composites were prepared by reinforcing poly-lactic acid (PLA) nano-hydroxyapatite (n-HA) (1 and 5 wt%) and 20 mol% continuous phosphate glass fibers (PGF). Initially, the effect of addition of 1 and 5% n-HA on the structural, thermal, mechanical, and thermo-mechanical properties of 100% PLA was investigated. With 5 wt% n-HA addition the tensile modulus (TM), flexural modulus (FM), tensile strength (TS), and flexural strength (FS) of 100% PLA was improve by 14.9, 47.4, 6, and 32.9%, respectively. Whereas, the un-notched impact strength of the nanocomposites suffer 2% deterioration. However, T g decreased by 0.3°C and T c increased by 10°C as 5 wt% n-HA was added to 100% PLA. Afterwards, the 5% n-HA/PLA composite were reinforced with 20 mol% continuous PGF and the TM, FM, TS, and FS of the tri-layered composites were 162.6, 412.5, 28.4, and 157.4% higher as compared to 100%PLA. Furthermore, the storage modulus of the 1% n-HA-filled composites was 500 MPa lower than 100%PLA, while 5 wt% n-HA-filled composites showed similar storage modulus as 100% PLA. 5 wt% n-HA-filled composite showed the highest peak of loss modulus which may be attribute to the chain segment of PLA matrix after the incorporation of HA. Thus, n-HA and PGF reinforcement resulted in improved mechanical properties of the composites and have great potential as biodegradable bone fixation device with enhanced load-bearing ability.  相似文献   

19.
采用有机硅柔软剂对国产聚乙烯醇(PVA)纤维进行表面改性,并制备了纤维增强水泥基复合材料(PVA-ECC)。采用扫描电子显微镜研究了有机硅柔软剂改性对PVA纤维表面结构的影响,用三点弯曲试验研究了有机硅柔软剂改性的PVA纤维对PVA-ECC复合材料弯曲性能的影响。研究结果表明:随着有机硅柔软剂含量的增加,PVA-ECC的极限弯曲强度和极限跨中挠度均先增加再减小,当有机硅柔软剂质量分数为7%时,极限弯曲强度和极限跨中挠度达到最大值,分别为5.627 MPa和2.123 mm;用ASTM C1609标准分析PVA-ECC三点弯曲韧性,当有机硅柔软剂质量分数为7%时,弯曲韧性达到最大值。  相似文献   

20.
TDE-85/AG-80环氧树脂基复合材料微观形貌与力学性能分析   总被引:1,自引:2,他引:1  
选用两种耐高温多官能团环氧树脂TDE-5和AG-80为基体,T300碳纤维为增强体制备了复合材料单向板,纤维体积含量均为60%。实验测得TDE-85树脂基体复合材料单向板的弯曲模量为74.26GPa,弯曲强度为1061.4MPa,层间剪切强度(ILSS)为54.05MPa;AG-80树脂基体复合材料单向板弯曲模量为55.73GPa,弯曲强度为840.52MPa,层间剪切强度(ILSS)为44.84MPa。前者的弯曲强度、弯曲模量与剪切强度也分别高出后者26.3%、33.2%与20.5%。实验对弯曲试样断口微观形貌的受压部分和受拉部分进行了SEM和高倍数码显微镜观察。结果显示,AG-80树脂基与碳纤维的界面结合情况较差,纤维成束被拔出,纤维表面几乎没有树脂。TDE-85树脂基与碳纤维界面结合情况较好,纤维与树脂结合比较紧密,断面较为平整,只有少量纤维拔出,表面粘附大量树脂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号