首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
三螺杆挤出机常规螺纹元件挤出过程的CAE研究   总被引:3,自引:1,他引:3  
利用ANSYS软件分析了三螺杆挤出机常规螺纹元件中等温非牛顿流体的压力场、速度场和粘度场,并和双螺杆挤出机常规螺纹元件进行了比较,尤其对流道中心区进行了重点研究。结果表明,三螺杆挤出机的混合性能好于双螺杆挤出机;中心区的物料压力梯度和速度梯度都较小,物料在中心区流动缓慢,中心区的物料粘度值较大;对反应时间不宜过长的聚合物,应避免使用三螺杆挤出机。  相似文献   

2.
佟莹  朱向哲  高鹤  何延东 《化工学报》2016,67(10):4378-4388
三螺杆挤出机是一种新型的聚合物流体加工设备,其独有的中心区呈现出几何结构和受力状态的周期性变化,混合机理非常复杂。区别于传统的线性混合分析,从拉格朗日体系的新视角对三螺杆挤出机混沌混合进行拉格朗日拟序结构分析,利用有限时间Lyapunov指数(FTLE)、拉格朗日拟序结构(LCS),结合Poincaré截面和粒子可视化技术研究三螺杆挤出机二维流场的流体输运和混沌混合机理,讨论了中心区动态结构特性对FTLE和LCS分布的影响,并与单螺杆挤出机和双螺杆挤出机进行了对比分析。结果表明,LCS将三螺杆挤出机流域划分为近螺杆区、远螺杆区和中心区3个具有不同运动特性的区域,扭结是连接近螺杆区、远螺杆区和中心区物质交换的桥梁。随着混合时间的增加,扭结的弯曲和折叠程度逐渐增大,增强了3个区域的物质交换,强化了三螺杆流场的混沌混合。三螺杆挤出机啮合区附近存在3个双曲固定点,混合能力较好。Poincaré截面中椭圆周期点的出现说明在流域中心有非混沌区存在,因此三螺杆挤出机的中心区混合能力相对较弱。  相似文献   

3.
利用Polyflow聚合物流体分析软件,对三螺杆和双螺杆挤出机及不同参数啮合块的流道模型进行了等温数值模拟。经过统计后处理,引入加权平均剪切速率和剪切应力、回流系数等评价指标,深入分析了流场的混合行为。同时对倒三角形三螺杆挤出机和双螺杆挤出机的混合能力进行了对比,以此对三螺杆和双螺杆挤出机混合性能的优劣性加以探讨。  相似文献   

4.
Twin screw extruders can he classified according to their geometrical configuration. The main distinction is made between intermeshing and nonintermeshing extruders. Another distinguishing characteristic is the sense of rotation. The most important characteristics of the various twin screw extruders are examined, with particular emphasis on the effect of screw geometry on the conveying characteristics. A brief review is given of the state of the art in theoretical analysis of twin screw extruders. Experiments with two lab scale, intermeshing twin screw extruders are described, one co- and one counterrotating. Results are presented on power consumption, residence time distribution, and mixing characteristics of the two extruders. The counterrotating extruder exhibits a narrower residence time distribution and better dispersive mixing capability. The corotating extruder showed a better distributive mixing capability. These results can be explained in terms of the conveying and mixing mechanisms in both extruders. The overall extruder performance seems to be dominated by the effect of the intenneshing region. Any realistic, theoretical analysis of twin screw extruders should be centered around the flow behavior and mixing characteristics of the intermeshing region. The corotating extruder appears to be best suited for melt blending operations, while the counterrotating extruder seems to be preferred in operations where solid fillers have to be dispersed in a polymer matrix.  相似文献   

5.
Local residence time and distributive mixing were measured in conveying sections and kneading blocks of a twin screw‐extruder. The residence time measurements were completed using carbon black as the tracer and an infrared temperature probe to detect the temperature decrease caused by the changing surface emissivity. The validity of this experimental technique was extensively evaluated. A mixing limited interfacial reaction between polymer tracers was used to directly measure the distributive mixing in the twin‐screw extruder. Possible relationships between mixing and residence time in the sections of the twin‐screw extruder were investigated by combining these two measurements. Distributive mixing in conveying sections was related to the local average residence time and the fill. In contrast, distributive mixing in kneading blocks was related to the local average number of screw revolutions experienced by the polymer. Forward stagger kneading discs achieved the greatest amount of distributive mixing, which was attributed to a combination of local stagnant flow regions and more frequent interfacial reorientation.  相似文献   

6.
朱向哲 《塑料》2005,34(2):93-96
利用大型有限元软件ANSYS对聚乙烯熔体在四螺杆挤出机常规螺纹元件中的流动情况进行了分析,求出了速度场、压力场、黏度场,对流道的中心区进行了重点分析。计算结果表明:四螺杆的四个啮合区具有较大的压力梯度、速度梯度,其混合性能明显好于双螺杆挤出机。中心区有明显的环流现象,物料在中心区的停留时间较长,中心区物料没有滞留现象。  相似文献   

7.
A novel kind of extruding machinery is proposed—a tri-screw extruder (TRISE), in which three intermeshed screws are arranged in the three corners of a triangle; three meshing regions and a center zone also comprise the special construction. The flow rate and the pressure-generating ability of the melt in the thread-zone flow field of the tri-screw extruder, especially the pumping formed by the action of taking in and sending out melt in the unique center zone, are also described. The results of simulation and experiments clearly show that the tri-screw extruder has stronger conveying capacity. The shear frequency of material in the tri-screw extruder is higher than that in the twin-screw extruder, which means that filler could be loaded to a much higher point in the TRISE than in the twin-screw. Results from the TRISE also show that energy consumption of the TRISE is lower than that of the twin-screw extruder.  相似文献   

8.
李响  王东阳  朱向哲 《中国塑料》2022,36(1):160-165
基于离散元法分别对同向旋转的三螺杆以及双螺杆挤出机固体输送行为进行仿真模拟,对三螺杆挤出机颗粒速度分布以及受力分布进行分析,将三螺杆和双螺杆挤出机颗粒填充效率、输送质量以及质量流率进行对比分析.结果表明,位于螺棱和机筒附近位置的颗粒受到螺棱推力及机筒摩擦力影响较大,具有较高的速度;挤出机内部各区域颗粒填充顺序受螺杆旋转...  相似文献   

9.
To understand the performance of multicomponent reactions in twin screw extruders the mixing mechanism in the extruder had to be understood. Therefore, two new relevant mixing parameters are defined; the mixing efficiency, which is the average number of passages of material through a high shear region; and the mixing deficiency, which is the fraction of material that does not pass through a high shear region. With these parameters an analysis can be made of the mixing circumstances in the extruder. The new model was applied to the polymerization of urethanes in a counter-rotating twin screw extruder. The results agreed very well with the theoretical expectations.  相似文献   

10.
应用多普勒激光测速计测量同向旋转双螺杆挤出机捏合区域的速度分布。在90r/min的转速下,测量了两螺杆捏合区中推力区和阻力区熔体的轴向速度和法和速度。  相似文献   

11.
啮合同向三螺杆挤出机中三维等温流动的数值模拟   总被引:9,自引:1,他引:8  
胡冬冬  陈晋南 《化工学报》2004,55(2):280-283
Three-dimensional isothermal flow of polymer melt in the kneading-disc element of an intermeshing co-rotating tri-screw extruder was simulated by using finite element package POLYFLOW. Based on the velocity fields calculated, flow patterns of the melt were analyzed, and particle trajectories were visualized. The numerical results indicated that, in intermeshing co-rotating tri-screw extruders, particles went through three intermeshing regions during one cycle around the screws, thus achieving better plasticating and mixing than intermeshing co-rotating twin-screw extruders. Flow in the central region was also studied by using particle tracking technique, and residence time distribution (RTD) and trajectories for particles in this region were presented. The simulation results showed that there was no stagnation in the central region. This study provided a clear insight into the flow mechanism of tri-screw extrusion. It also provided a new method for studies of flow mechanisms in other complicated mixers.  相似文献   

12.
利用EDEM软件对一种普通锥形和两种双锥型螺杆挤出机固体输送段进行模拟.分析了高密度聚乙烯(PE-HD)颗粒在锥形双螺杆挤出机内的运动状态和分布规律.对比分析了3种锥形螺杆挤出的质量流速率、填充率、平均速度、平均压力、平均剪切应力和力矩等参数,给出了普通型和双锥型螺杆挤出机固体输送机理以及主要影响因素.结果表明,相比于...  相似文献   

13.
The intermeshing counterrotating twin screw extruder is widely used for compounding, devolatilization, blending, and reactive extrusion. A fluid dynamics analysis package-FIDAP, using the finite element method, was implemented to simulate the 3-D flow patterns in the region of conveying elements and shearing discs of a Leistritz LSM30.34 twin screw extruder. The rheological behavior of the fluid was described by a power law model. The flow fields were characterized in terms of velocity profiles, pressure distributions, shear stresses generated, and a parameter λ quantifying the elongational flow components. The influence of screw rotational speed and axial pressure difference on the flow characteristics was also analyzed. A comparison between the flow characteristics in the shearing discs operated in a corotating or counterrotating mode was also presented.  相似文献   

14.
崔同伟  马秀清 《中国塑料》2015,29(7):104-111
在啮合同向双螺杆挤出机中,研究了熔体输送段分布混合元件和分散混合元件先后布置、交错/集中布置以及不同元件相同布置方式对聚酰胺6/低密度聚乙烯(PA6/PE-LD)共混体系性能的影响。结果表明,混合元件交错布置的螺杆构型混合能力优于混合元件集中布置的螺杆构型的混合能力;交错布置的螺杆构型获得的共混体系力学性能也优于混合元件集中布置的螺杆构型获得的共混体系的力学性能。  相似文献   

15.
Co-rotating, intermeshing twin screw extruders are widely used in polymer compounding and blending. Among the different modules of the co-rotating twin screw extruder, the kneading discs are the dominant ones in determining mixing efficiency. The major difficulty in solving the flow problem in the kneading disc region arises from the complex geometry and the time-dependent flow boundaries as the discs rotate. In this work, a fluid dynamics analysis package—FIDAP—using the finite element method was employed to simulate the flow patterns in the kneading disc region of a Werner & Pfleiderer ZSK-30 co-rotating twin screw extruder. The problem of time dependent flow boundaries was solved by selecting a number of sequential geometries to represent a complete mixing cycle. The flow field was characterized in terms of velocity profiles, pressure distributions, shear stresses generated and a parameter λ quantifying the elongational flow components. The last two parameters are the most important ones in analyzing mixing efficiency. The influence of design variables (stagger angle, right or left handed configuration) and processing conditions (rpm, axial pressure gradient) on the flow characteristics was analyzed.  相似文献   

16.
Twin‐screw extruders offer improved control of the residence time distribution (RTD) and mixing in materials such as plastics, rubber and food. Based on the flow and the heat transfer characteristics obtained for a self‐wiping, co‐rotating twinscrew extruder, the residence time and chemical reaction are studied by tracking the particles. For normally starve‐fed twin‐screw extruders, the length of the completely filled section is calculated as function of the process variables using the coupling of the flow with the die. With a model of the solid conveying section, the RTD for the whole extruder is calculated for corn meal at different screw speeds and flow rates. The calculated variation of RTD with the screw speed and the flow rate yields good agreement with observations from many experiments. The variation of the fully filled section length, chemical conversion and mixing effectiveness are also obtained under different operation conditions. Most of the results are in qualitative agreement with experimental results and may be used as guidelines for extruder design and determination of optimal operating conditions.  相似文献   

17.
A fluid dynamics analysis package (FIDAP), using the finite element method, was implemented to simulate the 3-D isothermal flow patterns in the conveying element of a ZSK-53 co-rotating twin screw extruder. The fluid was described by a power-law model. The dynamics of distributive mixing was studied numerically by tracking the motion of particles in the mixer. The extent of distributive mixing was characterized in terms of length and area stretch as well as strain distributions. The length stretch reflects the overall capability of the mixing device to spread minor component particles away from their neighbors originally present in the same cluster. The area stretch reflects the evolution of intermaterial area when mixing two fluids with a passive interface. We observed an oscillatory behavior for the average intermaterial area stretch, which was explained in terms of a stretching and folding mechanism. Folding occurs during material takeover from one screw to the other. Operating at higher rotational speeds enhances distributive mixing efficiency.  相似文献   

18.
啮合异向双螺杆挤出过程停留时间分布实验研究   总被引:2,自引:0,他引:2  
马秀清 《中国塑料》2003,17(11):81-84
通过对啮合异向双螺杆挤出过程常规螺纹元件螺杆组合及引入轴向循环段的螺杆组合停留时间的实验研究,分析了轴向循环段的引入对啮合异向双螺杆挤出过程停留时间及其分布的影响。  相似文献   

19.
Abstract

The flow behaviour of a polymer melt in the conveying region of an intermeshing corotating twin screw extruder was studied using the combination of mixed finite element and fictitious domain method. The model was a combination of the governing equations of continuity and momentum with Carreau rheological model in a three-dimensional Cartesian coordinate system. The equations were solved by the use of a mixed Galerkin finite element technique. The Picard’s iterative procedure was used to handle the non-linear nature of the derived equations. The particle tracking technique was used to obtain residence time distribution and analyse distributive mixing in conveying region. The shear rate distribution was investigated as a criterion for dispersive mixing. The applicability of this model was verified by the comparison of experimentally measured pressure and simulation results for high density polyethylene melt. This comparison shows that there is a good adequacy between experimental data and model predictions.  相似文献   

20.
利用有限时间李雅普诺夫指数(FTLE)和拉格朗日拟序结构(LCS),并结合混合指数和瞬时混合效率等,对比分析了偏心距为0、2、4 mm的3种偏心双螺杆挤出机流场内的混合特性。结果表明,当偏心距为4 mm时,偏心双螺杆挤出机中流体粒子的遍历范围较大,拉格朗日拟序结构较为完整;流域中存在双曲不动点,流体粒子经历了相对较好的拉伸和压缩作用。通过瞬时混合效率参数分析表明,偏心距为4 mm的偏心双螺杆挤出机的混合效率优于其他2种模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号