首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
视频下的正面人体身份自动识别   总被引:1,自引:0,他引:1  
为了能够实现视频下正面人体身份的自动识别,设计的系统包括Adaboost行人检测、Adaboost人脸检测、肤色验证、步态预处理、周期检测、特征提取以及决策级融合识别等模块.通过行人检测模块可以自动开启人脸检测模块和步态周期检测模块.实验结果表明,提出的根据下臂摇摆区域确定步态周期的方法对正面步态周期检测准确,计算量小,适用于实时的步态识别.采用人脸特征辅助步态特征在决策级的融合方法是解决视频下身份识别的新思路,在单样本的步态识别中,融合人脸特征可以提高识别精度.  相似文献   

2.
步态识别是一项新兴的生物识别技术, 可以被广泛地应用在刑事安防, 疫情传播链追踪等领域, 该项技术的本质在于通过人的人体体型和行走姿态来识别人的身份, 年龄, 性别等多种生物属性. 相比其他生物识别技术, 步态识别具有远距离, 全视角, 无感知, 防伪装等显著优势. 基于此, 本文设计了一款面向多人多生物属性的跨视角步态追踪系统, 该系统充分考虑了现实应用场景中存在的多人, 跨视角, 服饰变化等协变量对于步态识别准确率的影响, 并通过更加鲁棒的算法设计从复杂的环境中提取行人的步态信息从而对其身份, 年龄, 性别等生物属性进行准确的分析. 实验结果表明, 在跨视角和多种行走状态的情况下, 本系统中基于深度学习的步态识别算法模型的准确率可以达到88.0%, 在多视角的情况下, 性别分类准确率可以达到94.8%, 年龄估计的平均年龄误差约为7.92岁, 标准差约为8.11, 实验结果均优于近年来相关领域的算法, 达到相对领先的水平. 同时系统开发成本低, 面向落地应用场景, 并支持实时性步态检测.  相似文献   

3.
基于步态的人体身份检测与识别   总被引:6,自引:1,他引:6  
步态识别是利用人体步行的方式来区分人体身份,近年来,步态作为一种生物特征识别技术引起了越来越多人们的兴趣,其主要有三大优势:远距离识别,非侵犯性和难于隐藏性。国外对步态进行动态特征提取做了大量的工作,但还处于研究阶段,国内外还没有成熟的产品出现。该文提出了一种有效的步态检测方法,采用步态序列相似性进行人体身份识别。  相似文献   

4.
通过增强样本数据和网络特征,提出双流步态网络,增强模型对携带物、衣物变化影响的鲁棒性.首先构造双流步态网络,分别提取步态视频数据中的全局特征和协变量影响范围外的局部判别信息.再将两组网络的特征信息相加融合后,得到步态的双流特征表达.提出的限制随机遮挡策略增广用于训练样本的难度和多样性,提高网络对局部特征的学习能力,减弱协变量的不利影响.另外,改进三元组损失采样方法,加速网络模型的训练收敛速度.在大型步态数据集CASIA-B和OU-MVLP上的实验表明,在携带背包和穿着不同衣物的行走状态下,双流步态网络步态识别准确率较高.  相似文献   

5.
步态识别是利用人体步行的方式来区分人体身份.近年来,步态作为一种生物特征识别技术已引起了越来越多人们的兴趣.本文从步态识别技术的起源进行讨论,对国际上步态识别技术进行了研究,对主流的识别方法进行分析,对研究步态识别具有指导意义.  相似文献   

6.
基于步态的身份识别作为一种新的生物特征识别技术,以其非接触、无打扰、远距离、不易伪装等优点成为了生物特征识别技术领域的研究热点。此外,近年来,由于MEMS惯性传感器技术发展成熟及其在便携式设备中的广泛应用,基于惯性传感器的步态身份识别越来越受到科研人员的关注。文中收集整理了国内外有关惯性传感器步态身份识别的研究方法和现状,并对该领域的相关技术进行了回顾;根据识别过程处理的先后顺序,依次回顾了数据采集、数据预处理、数据分割、特征选择与组合、智能识别各个阶段的相关技术以及研究现状,并给出了目前主要的公共步态数据库,以方便感兴趣的读者进行实验分析。最后,在此基础上讨论了基于惯性传感器的步态身份识别的技术难点,并对未来发展方向进行了展望。  相似文献   

7.
行人属性识别旨在判断目标行人的预定义属性标签,从而生成关于该行人的结构化描述,包括年龄、性别、衣着、配饰等多种层次的语义信息.由于行人属性识别在视频监控领域具有极大的应用潜力,该任务广受研究者关注.随着深度学习的快速发展,研究者提出众多识别行人属性的方法,以获得更为精准的识别结果.针对当前复杂场景下,该任务面临的监控画面不清晰、行人状态变化、遮挡等问题,对监控场景下基于单帧与视频数据的行人属性识别方法进行综述,首先围绕行人属性识别这一任务,介绍其研究背景及任务概念,指出当前研究所面临的问题与挑战;其次根据“单帧图像”和基于视频数据的“序列图像” 2种不同的样本类型,对行人属性识别方法进行分类,并依据属性识别过程中所采用的技巧和思路,归纳总结最新提出的行人属性识别方法,概述研究现状;再对当前主流使用的数据集进行分析比较,总结其特点;最后,从状态引导行人属性识别、立体属性、多任务融合、新数据集构建4个方面,思考该领域的未来发展方向并作出展望.  相似文献   

8.
步态识别是非接触式生物识别领域中一个比较前沿的课题,它主要是利用行走过程中个体步态之间的差异来识别人的身份。近年来,随着可穿戴传感器在人体信息采集中的广泛应用,利用惯性传感器采集步行过程中的线性加速度以及角速度进而实现步态特征提取是该领域中一个研究热点。为了提取更加有效的步态识别特征,利用基于注意力机制的卷积神经网络来进行步态特征的深度学习,其主要流程是先对原始数据进行预处理,接着利用卷积神经网络对处理后的数据提取步态特征,然后利用注意力机制对步态特征进行加强,最后再分类。实验结果证明了本文方法的优越性。  相似文献   

9.
步态识别是根据人体的行走方式进行身份识别.目前,大多数步态识别方法通过浅层神经网络进行特征提取,在室内步态数据集表现良好,然而在近年新公布的室外步态数据集中性能表现不佳.为了解决室外步态数据集带来的严峻挑战,提出了一种基于视频残差神经网络的深度步态识别模型.在特征提取阶段,基于提出的视频残差块构建深层3D卷积神经网络(3D CNN),提取整个步态序列的时空动力学特征;然后,引入时序池化和水平金字塔映射降低采样特征分辨率并提取局部步态特征;使用联合损失函数驱动训练过程,最后通过BNNeck平衡损失函数并调整特征空间.实验分别在公开的室内(CASIA-B)、室外(GREW、Gait3D)这3个步态数据集上进行.实验结果表明,该模型在室外步态数据集中的准确率以及收敛速度优于其他模型.  相似文献   

10.
利用步态信息进行身份识别是一种新兴的生物识别技术.相较于其他的生物识别技术,其具有不易伪装、可在远距离情况下进行身份识别的优点.现有模型的识别方法计算量大、模型难以准确建立;现有的分类方法普遍存在训练时间长、分类准确率不高的问题.针对以上问题,对步态视频进行分帧处理,将分帧后的图像进行运动目标检测、形态学处理和图像归一...  相似文献   

11.
为有效提高鉴别可穿戴传感数据步态模式的准确度,本文提出一种将卷积神经网络和长短时记忆神经网络相融合的深度学习步态模式判别新模型,该模型充分利用卷积神经网络所具获取最具数据局部空间特征和长短时记忆神经网络模型所具获取数据内在特征时间相关性优异特性,有效挖掘隐含于高维性、非线性、随机性可穿戴传感时序步态数据与步态模式变化密...  相似文献   

12.
基于深度学习的步态识别算法优化研究   总被引:1,自引:0,他引:1  
基于深度学习的神经网络,对步态识别算法进行了优化研究。利用粒子群优化BP神经网络阈值、权值,在神经网络中代入优化后的初始值进行训练,避免陷入局部最优。通过Vicon MX系统对角度特征值进行采集,利用基于粒子群优化BP神经网络进行识别,验证其识别步态的可行性;筛选出传感器系统特征值,在对其优化改进时选取粒子群优化BP神经网络。与传统神经网络法、粒子群优化法相比,基于粒子群优化BP神经网络法的识别方式,识别时间短且识别率高。  相似文献   

13.
步态识别具有对图像分辨率要求低、可远距离识别、无需受试者合作、难以隐藏或伪装等优势,在安防监控和调查取证等领域有着广阔的应用前景。然而在实际应用中,步态识别的性能常受到视角、着装、携物和遮挡等协变量的影响,其中视角变化最为普遍,并且会使行人的外观发生显著改变。因此,提高步态识别对视角的鲁棒性一直是该领域的研究热点。为了全面认识现有的跨视角步态识别方法,本文对相关研究工作进行了梳理和综述。首先,从基本概念、数据采集方式和发展历程等角度简要介绍了该领域的研究背景,在此基础上,整理并分析了基于视频的主流跨视角步态数据库;然后,从基于3维步态信息的识别方法、基于视角转换模型的识别方法、基于视角不变特征的识别方法和基于深度学习的识别方法 4个方面详细介绍了跨视角步态识别方法。最后,在CASIA-B(CASIA gait database, dataset B)、OU-ISIR LP(OU-ISIR gait database, large population dataset)和OU-MVLP(OU-ISIR gait database, multi-view large population ...  相似文献   

14.
视频行人检测是计算机视觉的一个重要应用,本文利用深度学习检测近似垂直视角的行人,但若单纯检测行人,易受与行人语义相关的行人附属属性(如背包和帽子)的干扰,容易造成误检.本文提出一种基于更快区域卷积神经网络的联合语义行人检测方法:首先调整网络模型,增强对小目标的辨别力,使其可以有效的检测行人和行人的语义属性;然后利用空间关系建立行人及其语义属性的关联,合并行人与其语义信息,并对候选行人目标进行自适应得分调整,结合行人语义属性判断候选行人目标.大量的实验表明,本文的方法精度高,速度快,具有实用价值,且检出的行人与其语义属性还可用于后续的人数统计和行人行为分析.  相似文献   

15.
对文字检测和识别技术进行了全面的介绍。介绍了自然场景文字识别技术的研究背景、应用领域、技术难点等;介绍了场景文字识别的预处理技术及流程,介绍了近年来出现的基于深度学习的通用检测网络、维吾尔文和中英文的深度学习文字检测网络、场景文字识别深度学习网络、端到端场景文字检测与识别深度学习网络,并总结了各类网络的结构特点、优势、局限性、应用场景以及实现成本,接着进行了综合分析;最后介绍了公开数据集,并探讨了场景文字识别技术的发展趋势及可能的研究方向。  相似文献   

16.
实时场景下的小脸检测存在检出率低而且回归精度差的问题。通过融合更底层特征进行多尺度级联预测。根据实时场景下的人脸特点生成不同大小和比例的预测框以更好地适应人脸形状。在预测阶段提出了基于IOU判别的soft and hard nms算法,对冗余预测框进行抑制,设置两个阈值将网络生成的预测框划分为低中高三段,对不同段的预测框采取不同的处理以达到精准筛选的目的。最优架构可在两张NVIDIA GTX 1080显卡下的实时视频检测和摄像头检测中获得45 f/s的速度,并且在Wider Face总体验证集上取得82.6%的平均精度。  相似文献   

17.
不同于基于外形的步态识别方法,基于关键点的步态识别方法采取人体关键点作为模型的输入,能够有效避免数据集带来的背景噪声干扰;其次,现有的基于关键点的步态识别方法忽略了人体结构先验知识的利用,且更倾向于提取局部特征,从而忽略了全局上的关联性.本文提出了一个基于关键点的步态识别框架GaitBody,能够从步态关键点序列中提取更有分辨性的特征.首先,我们设计了带有较大卷积核的多尺度卷积模块来提取多粒度的时序特征;其次,我们利用自注意力机制来提取空间特征,并在此基础上引入了人体结构拓扑信息来进一步利用人体结构的先验知识;最后,为了更好使用时序信息,我们生成最有代表性的时序特征,并将其引入到自注意模块来融合时序和空间特征.在CASIA-B和OUMVLP-Pose数据集上的实验结果表明,我们的方法在基于关键点的步态识别方法上取得了最优结果,消融实验也证明了各个模块的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号