共查询到19条相似文献,搜索用时 74 毫秒
1.
命名实体识别是自然语言处理中的一项基础任务,传统的识别方法往往需要外部知识和人工筛选特征,需要较高的人力成本和时间成本;针对传统方法的局限性,提出一种基于GRU (Gated Recurrent Unit)的命名实体识别模型,该模型以字向量作为输入单位,通过双向GRU层提取特征,并通过输出层得到标签序列.在传统命名实体和会议名称这种特定领域命名实体上对该模型进行了测试.实验结果表明,本文设计的循环神经网络模型能有效的识别命名实体,省去了人工设计特征的繁琐工作,提供了一种端到端的识别方法. 相似文献
2.
3.
为了能快速、准确地将分散在Web网页中的音乐实体抽取出来,在全方位了解音乐领域中命名实体的特征的基础上,提出了一种规则与统计相结合的中文音乐实体识别方法,并实现了音乐命名实体识别系统。通过测试发现,该系统具有较高的准确率和召回率。 相似文献
4.
在基于神经网络的中文命名实体识别过程中,字的向量化表示是重要步骤,而传统的词向量表示方法只是将字映射为单一向量,无法表征字的多义性.针对该问题,通过嵌入BERT预训练语言模型,构建BERT-BiGRU-CRF模型用于表征语句特征.利用具有双向Transformer结构的BERT预训练语言模型增强字的语义表示,根据其上下文动态生成语义向量.在此基础上,将字向量序列输入BiGRU-CRF模型中进行训练,包括训练整个模型和固定BERT只训练BiGRU-CRF2种方式.在MSRA语料上的实验结果表明,该模型2种训练方式的F1值分别达到95.43%和94.18%,优于BiGRU-CRF、Radical-BiLSTM-CRF和Lattice-LSTM-CRF模型. 相似文献
5.
在电力生产的过程中, 往往会产生大量电力相关的文本数据, 但这些数据大多是非结构化数据且体量庞大繁杂, 实现对电力相关数据有效的组织管理可以促进电力企业实现数字资产商品化, 以此为电力企业发掘新的利润增长点. 本文针对将电力行业中的相关规章制度文本进行结构化处理这一问题, 提出了基于字符和二元词组特征的命名实体识别的模型. 在该模型中, 通过使用融合多特征的BERT预训练语言模型得到词嵌入表示, 并使用引入相对位置编码的Transformer模型和条件随机场作为编码层和解码层, 本文提出的模型在实体类型识别的准确率为92.64%, 取得了有效的识别效果. 相似文献
6.
7.
本文针对三种重要的命名实体,即人名、地名、组织名,提出了一种隐马尔可夫模型(HMM)和最大熵模型(ME)相结合的汉语命名实体识别的方法.该方法的特点在于:使命名实体识别和词性标注两个任务一体化;融合两种统计模型进行命名实体识别,其中HMM从整体上(句子范围内)对命名实体识别进行约束,ME则在局部范围内(当前词的上下文范
范围)估计一个词串被标记为某种命名实体的概率.实验表明,这种方法能较好地识别上述三种命名实体. 相似文献
范围)估计一个词串被标记为某种命名实体的概率.实验表明,这种方法能较好地识别上述三种命名实体. 相似文献
8.
传统的命名实体识别方法可以凭借充足的监督数据实现较好的识别效果.而在针对电力文本的命名实体识别中,由于对专业知识的依赖,往往很难获取足够的监督数据,即存在少样本场景.同时,由于电力行业的精确性要求,相比于一般的开放领域任务,电力领域的实体类型更多,因此难度更大.针对这些挑战,本文提出了一个基于主题提示的命名实体识别方法.该方法将每个实体类型视为一个主题,并使用主题模型从训练语料中获取与类型相关的主题词.通过枚举实体跨度、实体类型、主题词以填充模板并构建提示句.使用生成式预训练语言模型对提示句排序,最终识别出实体与对应类型标签.实验结果表明,在中文电力命名实体识别数据集上,相比于几种传统命名实体方法,基于主题提示的方法取得了更好的效果. 相似文献
9.
10.
命名实体识别作为信息抽取领域的一个基础任务,能为机器翻译、关系抽取等下游任务提供有效支撑,具有重要的研究意义。针对中文命名实体识别方法中存在的实体边界模糊的问题,提出了一种结合实体边界线索的命名实体识别模型,模型由边界检测、线索生成、实体分类三个模块组成。利用边界检测模块识别实体边界。在线索生成模块中依据边界信息生成实体跨度,得到带边界线索标签的文本序列,使模型通过边界线索标签感知句子中的实体边界,学习实体边界和上下文的语义依赖特征。将带有边界线索标签的文本序列作为实体分类模块的输入,使用双仿射机制增强标签之间的语义交互,并结合双仿射机制与多层感知机的共同预测作为实体识别的结果。该模型在ACE2005中文数据集和Weibo数据集上的F1值分别达到了90.47%和73.54%,验证了模型对中文命名实体识别的有效性。 相似文献
11.
基于多头自注意力机制的Transformer作为主流特征提取器在多种自然语言处理任务中取得了优异表现,但应用于命名实体识别任务时存在一字多词、增加额外存储与词典匹配时间等问题。提出一种CNN-Head Transformer编码器(CHTE)模型,在未使用外部词典和分词工具的基础上,通过自注意力机制捕获全局语义信息,利用不同窗口大小的CNN获取Transformer中6个注意力头的Value向量,使CHTE模型在保留全局语义信息的同时增强局部特征和潜在词信息表示,并且应用自适应的门控残差连接融合当前层和子层特征,提升了Transformer在命名实体识别领域的性能表现。在Weibo和Resume数据集上的实验结果表明,CHTE模型的F1值相比于融合词典信息的Lattice LSTM和FLAT模型分别提升了3.77、2.24和1.30、0.31个百分点,具有更高的中文命名实体识别准确性。 相似文献
12.
命名实体识别是自然语言处理中的重要任务,且中文命名实体识别相比于英文命名实体识别任务更具难度。传统中文实体识别模型通常基于深度神经网络对文本中的所有字符打上标签,再根据标签序列识别命名实体,但此类基于字符的序列标注方式难以获取词语信息。提出一种基于Transformer编码器的中文命名实体识别模型,在字嵌入过程中使用结合词典的字向量编码方法使字向量包含词语信息,同时针对Transformer编码器在注意力运算时丢失字符相对位置信息的问题,改进Transformer编码器的注意力运算并引入相对位置编码方法,最终通过条件随机场模型获取最优标签序列。实验结果表明,该模型在Resume和Weibo中文命名实体识别数据集上的F1值分别达到94.7%和58.2%,相比于基于双向长短期记忆网络和ID-CNN的命名实体识别模型均有所提升,具有更优的识别效果和更快的收敛速度。 相似文献
13.
14.
基于ALBERT-BGRU-CRF的中文命名实体识别方法 总被引:1,自引:0,他引:1
命名实体识别是知识图谱构建、搜索引擎、推荐系统等上层自然语言处理任务的重要基础,中文命名实体识别是对一段文本序列中的专有名词或特定命名实体进行标注分类。针对现有中文命名实体识别方法无法有效提取长距离语义信息及解决一词多义的问题,提出一种基于ALBERT-双向门控循环单元(BGRU)-条件随机场(CRF)模型的中文命名实体识别方法。使用ALBERT预训练语言模型对输入文本进行词嵌入获取动态词向量,有效解决了一词多义的问题。采用BGRU提取上下文语义特征进一步理解语义,获取长距离词之间的语义特征。将拼接后的向量输入至CRF层并利用维特比算法解码,降低错误标签输出概率。最终得到实体标注信息,实现中文命名实体识别。实验结果表明,ALBERT-BGRU-CRF模型在MSRA语料库上的中文命名实体识别准确率和召回率分别达到95.16%和94.58%,同时相比于片段神经网络模型和CNN-BiLSTM-CRF模型的F1值提升了4.43和3.78个百分点。 相似文献
15.
针对现有命名实体识别方法主要考虑单个句子内的上下文信息,很少考虑文档级上下文影响的问题,文中提出基于机器阅读理解的中文命名实体识别方法,利用阅读理解思想,充分挖掘文档级的上下文特征,支撑实体识别.首先,针对每类实体,将实体识别任务转化为问答任务,构建问题、文本及实体答案三元组.然后,将三元组信息通过双向Transformer编码器进行预训练,再通过卷积神经网络捕捉文档级文本上下文信息.最后通过二进制分类器实现实体答案预测.在MSRA、人民日报公开数据集和自建数据集上的命名实体识别对比实验表明,文中方法性能较优,阅读理解思想对实体识别具有较好的作用. 相似文献
16.
为解决命名实体之间的复杂嵌套以及语料库中标注误差导致的相邻命名实体边界重叠问题,提出一种中文重叠命名实体识别方法。利用基于随机合并与拆分的层次化聚类算法将重叠命名实体标签划分到不同的聚类簇中,建立文字到实体标签之间的一对一关联关系,解决了实体标签聚类陷入局部最优的问题,并在每个标签聚类簇中采用融合中文部首的BiLSTM-CRF模型提高重叠命名实体的识别稳定性。实验结果表明,该方法通过标签聚类的方式有效避免标注误差对识别过程的干扰,F1值相比现有识别方法平均提高了0.05。 相似文献
17.
旅游领域命名实体识别是旅游知识图谱构建过程中的关键步骤,与通用领域的实体相比,旅游文本的实体具有长度长、一词多义、嵌套严重的特点,导致命名实体识别准确率低。提出一种融合词典信息的有向图神经网络(L-CGNN)模型,用于旅游领域中的命名实体识别。将预训练词向量通过卷积神经网络提取丰富的字特征,利用词典构造句子的有向图,以生成邻接矩阵并融合字词信息,通过将包含局部特征的词向量和邻接矩阵输入图神经网络(GNN)中,提取全局语义信息,并引入条件随机场(CRF)得到最优的标签序列。实验结果表明,相比Lattice LSTM、ID-CNN+CRF、CRF等模型,L-CGNN模型在旅游和简历数据集上具有较高的识别准确率,其F1值分别达到86.86%和95.02%。 相似文献
18.
基于BERT-BiLSTM-CRF模型的中文实体识别 总被引:1,自引:0,他引:1
命名实体识别是自然语言处理的一项关键技术.基于深度学习的方法已被广泛应用到中文实体识别研究中.大多数深度学习模型的预处理主要注重词和字符的特征抽取,却忽略词上下文的语义信息,使其无法表征一词多义,因而实体识别性能有待进一步提高.为解决该问题,本文提出了一种基于BERT-BiLSTM-CRF模型的研究方法.首先通过BERT模型预处理生成基于上下文信息的词向量,其次将训练出来的词向量输入BiLSTM-CRF模型做进一步训练处理.实验结果表明,该模型在MSRA语料和人民日报语料库上都达到相当不错的结果, F1值分别为94.65%和95.67%. 相似文献
19.
现有命名实体识别模型在字嵌入过程中多采用字符向量、字向量等不同单词表示向量的拼接或累加方式提取信息,未考虑不同单词表示特征之间的相互依赖关系,导致单词内部特征信息获取不足。提出一种基于交互式特征融合的嵌套命名实体识别模型,通过交互的方式构建不同特征之间的通信桥梁,以捕获多特征之间的依赖关系。采用交互机制得到包含不同单词表示信息的字嵌入向量,基于双向长短时记忆网络提取单词的表示特征,并对不同单词的表示特征进行交互,捕获特征之间的相互依赖关系。为进一步提取序列特征的上下文信息,采用基于特征交互的多头注意力机制捕获句子上下文的依赖关系。在此基础上,采用二元序列标记法过滤非实体区域,得到粗粒度候选区间,并对其进行细粒度划分以判断实体类别。实验结果表明,该模型的召回率和F1值为72.4%和71.2%,相比现有的嵌套命名实体识别模型,F1值平均提高了1.72%。 相似文献