首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrid composites of Polypropylene (PP) reinforced with intimately mixed short banana and glass fibers were fabricated using Haake twin screw extruder followed by compression molding with and without the presence maleic anhydride grafted polypropylene (MAPP) as a coupling agent. Incorporation of both the fibers into PP matrix resulted in an increase in tensile, flexural and impact strength with an increasing level of fiber content upto 30 wt% at banana: glass fiber ratio of 15:15 wt% and 2 wt% of MAPP. The rate of water absorption for the hybrid composites decreased due to the presence of glass fiber and coupling agent. The effect of fiber loading in presence of coupling agent on the dynamic mechanical properties has also been analyzed to investigate the interfacial properties. An increase in the storage modulus (E′) of the treated composite indicates higher stiffness. The tan δ spectra confirms a strong influence of fiber contents and coupling agent on the α and β relaxation processes of PP. The nature of fiber matrix adhesion was examined through scanning electron microscopy (SEM) of the tensile fractured specimen. Thermal measurements were carried out employing differential scanning calorimetry (DSC) and the thermogravimetric analysis (TGA) which indicated a decrease in the crystallization temperature and thermal stability of PP with the incorporation of MAPP treated banana and Glass fiber.  相似文献   

2.
The present work was aimed to investigate the individual and hybrid reinforcement effect of multiscale fillers [glass fibers (GF)/multiwalled carbon nanotubes (MWCNTs)] in polypropylene (PP) matrix. The MWCNT content in the hybrid composites was varied from 0.5 to 5 wt%, and glass fiber fraction was fixed as 20 wt%. The morphology of nano and hybrid composite revealed reasonable dispersion of MWCNTs and glass fibers in the matrix. At a MWCNT content of 3 wt%, the optimum tensile properties for the hybrid composites were achieved and beyond which it declined due to agglomeration effects as revealed by transmission electron microscopy. A comparative study of the experimental and predicted values of moduli of nano, micro, and hybrid composites using various micromechanical models was conducted. The simultaneous incorporation of MWCNTs and glass fibers in PP restricted the mobility of polymer chains as indicated by the increase in storage modulus and rise in glass transition temperature obtained by dynamic mechanical analysis. The differential scanning calorimetry studies indicated that the inclusion of 2 wt% of MWCNTs increased the crystallinity of PP from 58.2 to 69.1% in hybrid composites. The Avrami and Mo models were used to explore nonisothermal crystallization kinetics, and Mo model was in close agreement with the experimental results. The sorption behavior of the composites revealed that the formation of immobilized regions developed by the simultaneous inclusion of micro and nano fillers delayed the transport of the solvent. J. VINYL ADDIT. TECHNOL., 25:E94–E107, 2019. © 2019 Society of Plastics Engineers  相似文献   

3.
木纤维增强聚丙烯复合材料性能的研究   总被引:8,自引:0,他引:8  
与常用的对木纤维进行化学改性的方法相比,本研究采用磺酰胺类增塑剂,在高速捏合机上对木纤维增塑,从而改进木纤维在聚丙烯中的分散性,采用马来酸酐接枝聚丙烯作为相容剂,使用了四种不同形态的木纤维来增强聚丙烯,研究了复合材料的力学性能与纤维种类、含量的关系,通过SEM研究了复合材料的断面形态,通过熔体流动速率研究了复合材料加工性能等。  相似文献   

4.
Hybrid composites from rayon fibers (~2–5 cm size) and polypropylene (PP) were fabricated by using an extruder. Fibre content of the composite was varied from 5–30% by weight and physico-mechanical properties of the composites were measured. Surface morphology as observed by SEM showed good interface adhesion between rayon and PP matrix. Furthermore inclusion of rayon (up to 15% fiber inclusion) in the composite increased tensile, bending and hardness properties. As the fiber content in the composite increased more than 15%, physico-mechanical properties decreased due to the decrease of fiber matrix adhesion. The change of tensile properties due to environmental aging was carried out by keeping the composite under soil for 1 month and tensile properties were measured periodically. The aging result suggests that composites retained about 75% of its original tensile and bending strength even after 1 month soil burial. The modified fibers were also used for the study. As such the fibers were treated with vinyl-trimethyoxysilane and methanol solution and irradiated under UV before being used with PP in extruder. The results showed retardation of the physico-mechanical properties for composites obtained from irradiated rayon fibers than the composites fabricated from non irradiated rayon fibers.  相似文献   

5.
分别以聚丙烯(PP)、聚乙烯(PE)、玻纤增强PP/PE为基体材料,通过挤出成型制备了木塑复合材料(WPC)。研究表明,玻纤能够有效地提高WPC的性能,以玻纤增强PP/PE为基体制备的WPC的冲击强度、拉伸强度、弯曲强度、弯曲弹性模量分别达到4.58 kJ/m2,19 MPa,30.8 MPa,3520 MPa,性能优于以PP或PE为基体制备的WPC。  相似文献   

6.
Hybrid composites of polypropylene (PP), reinforced with short banana and glass fibers were fabricated using Haake torque rheocord followed by compression molding with and without the presence maleic anhydride grafted polypropylene (MAPP) as a coupling agent. Incorporation of both fibers into PP matrix resulted in increase of tensile strength, flexural strength, and impact strength upto 30 wt% with an optimum strength observed at 2 wt% MAPP treated 15 wt% banana and 15 wt% glass fiber. The rate of water absorption for the hybrid composites was decreased due to the presence of glass fiber and coupling agent. The effect of fiber loading in presence of coupling agent on the dynamic mechanical properties has been analyzed to investigate the interfacial properties. An increase in storage modulus (E′) of the treated‐composite indicates higher stiffness. The loss tangent (tan δ) spectra confirms a strong influence of fiber loading and coupling agent concentration on the α and β relaxation process of PP. The nature of fiber matrix adhesion was examined through scanning electron microscopy (SEM) of the tensile fractured specimen. Thermal measurements were carried out through differential scanning calorimetry (DSC) and the thermogravimetric analysis (TGA), indicated an increase in the crystallization temperature and thermal stability of PP with the incorporation of MAPP‐treated banana and glass fiber. POLYM. COMPOS., 31:1247–1257, 2010. © 2009 Society of Plastics Engineers  相似文献   

7.
采用剑麻纤维(SF)和长玻璃纤维(LGF)混杂增强聚丙烯(PP)复合材料,考察了SF/LGF的比例和含量对PP复合材料力学性能的影响。结果表明:SF/LGF在聚丙烯树脂基体中呈交叉网状分布,这有利于提高复合材料的冲击强度、弯曲模量、拉伸强度和软化点。在SF/LGF质量比为2 2∶,二者总质量分数为30%时,SF/LGF混杂增强PP复合材料的综合力学性能较好。  相似文献   

8.
Thermoplastic matrix composites have recently emerged as promising engineering materials because of their desirable properties such as high service temperatures, high impact resistance, and processing advantages. However, residual stresses in composites introduced during fabrication are cited as one of the most significant problems in the processing of composites. In some instances these stresses have been shown to significantly degrade the strength of the material, resulting in matrix cracking, debonding, reduced fracture toughness, and delamination. In this work, studies have been carried out on glass fiber reinforced polypropylene composites formed by compression molding process from co-mingled fabrics. The fibers were pre-stressed during the process to produce high performance composite products with low residual microstresses, which are harmful to the properties of the composite. Mechanical tests showed that pre-stress can increase the tensile, flexural and interlaminar shear properties of the composites, and there exists an optimum pre-stress level to gain best properties for each external loading condition.  相似文献   

9.
以马来酸酐(MAH)为接枝单体、丙烯酸-2-羟乙酯为共聚单体,利用熔融接枝技术对聚丙烯(PP)进行改性;以MAH/丙烯酸-2-羟乙酯熔融接枝改性PP为相容剂,研究相容剂对PP/玻璃纤维复合材料结构和性能的影响。结果表明:与未接枝PP相比,熔融接枝PP分子上接枝了MAH和—OH基团,而且熔融接枝反应对PP的熔点和热稳定性具有明显影响。另外,随着接枝PP含量的增加,PP/玻璃纤维复合材料的力学性能明显改善。当接枝PP含量为15%时,复合材料的拉伸强度提高了32%,冲击强度提高了13%,表明采用熔融共接枝工艺制备的PP具有优良的增容、偶联和分散效果。  相似文献   

10.
《国际聚合物材料杂志》2012,61(11):997-1013
Fique fibers reinforced polypropylene (PP) composites have been investigated for different fiber lengths and contents. Fiber/matrix interfacial adhesion has been modified by fiber treatments such as mercerization, esterification with maleic anhydride, and adding of an isocyanate compound. A copolymer of polypropylene with maleic anhydride has been employed as compatibilizer agent, by previous mixing with PP matrix. Both compatibilization ways improve fiber/matrix adhesion, as shown by changes of the free surface energy of fibers and also by SEM analysis. Addition of the compatibilizer agent leads to higher flexural properties than those obtained for composites where the fibers were treated. Dynamical mechanical properties of composites seem to indicate that movement in the crystalline PP phase, possibly occurring on the fiber/matrix interphase, takes place in between the glass transition and the melting temperatures of PP matrix.  相似文献   

11.
以玻璃纤维增强聚丙烯复合材料为研究对象,选取两种玻璃纤维、不同相容剂及不同含量探讨玻璃纤维增强聚丙烯复合材料的性能,研究了在95℃水煮24 h前后的力学性能、微观结构和结晶变化。结果表明,添加聚丙烯专用耐水解玻璃纤维,在相容剂含量为3%时,可以大大提高聚丙烯材料的力学性能和耐水解性能,已经被应用于洗衣机滚筒等长期水接触的部件。  相似文献   

12.
废弃木粉与短切玻璃纤维组合增强聚丙烯的力学性能   总被引:1,自引:0,他引:1  
用废弃木粉与短切玻璃纤维作为增强材料,制得了组合增强的聚丙烯复合材料,研究了制备工艺及设备、材料配方及界面改性方法等对材料力学性能的影响。结果表明,用单螺杆挤出机制备组合增强材料,可减少对玻璃纤维的损伤,保持较长的玻璃纤维,有利于其增强作用的发挥;随着玻璃纤维含量的增加,体系的力学性能提高,而木粉含量对材料力学性能的影响与玻璃纤维的含量相关;采用硅烷偶联剂对木粉进行表面处理,在基体中添加接枝极性基团的改性聚丙烯,可改善体系的界面结合,提高力学性能。  相似文献   

13.
采用磷酸酯偶联剂对芳纶纤维表面进行接枝改性,研究了实验条件和纤维含量对芳纶纤维增强聚丙烯(PP)复合材料力学性能的影响,并用电子扫描显微镜观察了PP复合材料的微观形态结构。结果表明:磷酸酯偶联剂成功接枝到芳纶纤维表面上,使芳纶纤维和PP的界面黏结性能得以明显改善。芳纶纤维可以显著地提高PP复合材料的力学性能当,其含量为20%时复,合材料的综合性能最优。  相似文献   

14.
This paper provides a rigorous literature review in a field of glass-fiber composites. Glass-fiber composite is a type of fiber-reinforced polymer composites. Glass-fiber composite holds good properties such as low density, high strength, and easy processing, so widely used in aerospace, automotive, and construction. Fabrication of glass-fiber composite has been discussed in the present study. Combining the glass-fiber with other fibers into a single polymer matrix results in the development of hybrid glass-fiber composites. The hybridization in glass-fiber composites raised new ideas for future in the field of composites.  相似文献   

15.
Two types of long jute fiber pellet consisting of twisted‐jute yarn (LFT‐JF/PP) and untwisted‐jute yarn (UT‐JF/PP) pellets are used to prepare jute fiber–reinforced polypropylene (JF/PP) composites. The mechanical properties of both long fiber composites are compared with that of re‐pelletized pellet (RP‐JF/PP) of LFT‐JF/PP pellet, which is re‐compounded by extrusion compounding. High stiffness and high impact strength of JF/PP composites are as a result of using long fiber. However, the longer fiber bundle consequently affects the distribution of jute fiber. The incorporation of 10 wt % glass fibers is found to improve mechanical properties of JF/PP composites. Increasing mechanical properties of hybrid composites is dependent on the type of JF/PP pellets, which directly affect the fiber length and fiber orientation of glass fiber within hybrid composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41819.  相似文献   

16.
Polypropylene (PP)/organomontmorillonite (OMMT) nanocomposites have been successfully prepared by melt intercalation by using the conventional method of twin‐screw extrusion and subsequently submitted for melt‐spinning. The structure and properties of the PP/clay nanocomposites and hybrid fibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), differential scanning calorimetry (DSC), and crystallization dynamics, etc. The organoclay layers were found to disperse in the PP resin at the nanometer level. The nanoscaled OMMT layers, dispersed in the PP matrix, actually played the role of heterogeneous nuclei species in the process of PP crystallization and increased the nucleation speed of the composites, hereby leading to the increase of crystallization rate of the as‐spun fiber. Meanwhile, it was found that the crystallinity of PP/OMMT hybrid fibers is much higher than that of pure PP fiber at the same draw ratios, whereas the orientation of PP/OMMT hybrid fibers is much lower than that of pure PP fiber at the same draw ratios. Because of the effective intercalation of OMMT into PP matrix, the nanocomposites have good spinnability, and the moisture absorption of the final PP fiber is improved. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 552–558, 2004  相似文献   

17.
Hybrid composites were fabricated by compounding process with varying the relative weight fraction of oil palm empty fruit bunch (EFB) and coir fibers to assess the effect of hybridization of oil palm EFB with coir fibers in polypropylene (PP) matrix. The mechanical and morphological properties of oil palm/coir hybrid composites were carried out. Tensile and flexural properties of oil EFB‐PP composites enhanced with hybridization of coir fibers except coir/oil palm EFB (25:75) hybrid composite, whereas highest impact properties at oil palm:coir fibers with 50:50 ratios. Results shown that hybrid composites with oil palm:coir fibers with 50:50 ratios display optimum mechanical properties. In this study, scanning electron microscopy (SEM) had been used to study morphology of tensile fractured surface of hybrid composites. Its clear from SEM micrograph that coir/EFB (50:50) hybrid composites display better tensile properties due to strong fiber/matrix bonding as compared with other formulations which lead to even and effective distribution of stress among fibers. The combination of oil palm EFB/coir fibers with PP matrix produced hybrid biocomposites material can be used to produce components such as rear mirrors' holder and window levers, fan blades, mallet, or gavel. POLYM. COMPOS., 35:1418–1425, 2014. © 2013 Society of Plastics Engineers  相似文献   

18.
竹纤维增强PP复合材料的研究   总被引:1,自引:1,他引:1  
杨勇 《塑料》2004,33(3):47-49
介绍了竹纤维增强聚丙烯(PP)复合材料的性能,初步探讨了竹纤维的处理、未处理以及纤维含量对增强PP的力学性能的影响因素。实验证明:与PP材料相比,添加竹纤维可使复合材料的力学性能有不同程度的改善,特别是对复合材料的冲击强度、拉伸强度及断裂伸长率影响较明显。  相似文献   

19.
软木纤维增强PP复合材料的研究   总被引:9,自引:0,他引:9  
采用软木纤维作为增强材料提高聚丙烯性能。为了改善软木纤维和聚丙烯母体之间的相容性,用马来酸酐接枝聚丙烯(MAPP)对软木纤维进行接枝处理,用MAPP或用三元乙丙橡胶(EPDM)对软木纤维进行改性处理。结果表明,与未经处理木纤维的复合材料相比,三种处理方法都使复合材料的热性能、加工性能和力学性能有了较大的提高。用MAPP接枝和用MAPP表面处理木纤维的方法比用EPDM表面处理木纤维的方法在提高复合材料热性能、加工流动性和拉伸强度方面更为显著。用EPDM表面处理木纤维在改善复合材料的冲击强度、断裂伸长率上更明显。此外,木纤维在复合材料中的浓度对复合材料其它性能的影响,以及MAPP接枝木纤维和MAPP处理木纤维的不同实验结果也进行了评价。  相似文献   

20.
短玻纤增强聚丙烯的研究进展   总被引:5,自引:0,他引:5  
综述了近年来有关短玻纤增强聚丙烯复合材料的力学性能、变形机理和断裂韧性等方面的研究工作。短玻纤取向后的复合材料注射样的力学性能是各向异性的 ,复合材料在取向方向上具有更高的拉伸强度。玻纤与树脂基体间界面结合力的强弱对材料的力学性能同样起着至关重要的作用。良好的界面结合力保证了应力有效地从基体向玻纤传递 ,从而提高了复合材料的强度。由于短玻纤的分布既不均匀又不规则 ,在受到负荷时的变形过程很复杂 ,包括玻纤 -基体的界面脱黏、脱黏后的摩擦、基体的塑性变形、玻纤的塑性变形、玻纤断裂、基体断裂和玻纤抽出等  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号