首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Abstract

Copolymers of N-p-tolylmaleimide, methyl methacrylate, and acrylonitrile were synthesized by the semibatch emulsion polymerization method and used for blending with poly(vinylchloride) (PVC) to improve its heat resistance. The thermal properties of the blends with different terpolymer content were investigated by differential scanning calorimeter (DSC), thermogravimatric analysis (TGA), and Vicat softening point tester (T Vicat). The results showed that the glass transition temperature (T g ), Vicat softening point, and thermal decomposition temperature of the blends increased with increasing terpolymer content. The tensile strength increased with an increase in the copolymer content. The results of the rheological behavior showed that the apparent viscosity ? α decreased with increasing shear rate and increased with the copolymer content.  相似文献   

2.
Terpolymers of N‐cyclohexylmaleimide, methylmethacrylate, and acrylonitrile (AN) at different AN feed content were synthesized by suspension polymerization. The thermal properties of the terpolymers such as glass transition temperature (Tg) and Vicat softening temperature (TVicat) were determined by torsion braid analysis and Vicat softening temperature tester, respectively. The value of Tg and TVicat decreased with increasing AN feed content. Thermogravimetric analyses were carried out with the results that the incorporated AN units enhanced the thermal stability of the resulting polymers and a second degradation step appeared with the addition of AN. The mechanical properties (tensile strength and impact strength) of the terpolymers were also detected and the results show that the tensile strength and impact strength of terpolymers increase with increasing AN feed content. The rheological results illustrated that the terpolymers showed rheological behavior similar to that of pseudoplastic liquid. The apparent shear viscosity decreased with the increasing of AN feed content. The flow power index n increased with increasing AN feed content. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 792–796, 2007  相似文献   

3.
Terpolymers of N‐phenylmaleimide (PMI), methyl methacrylate (MMA), and acrylonitrile (AN) were synthesized by emulsion polymerization. The thermal properties of the terpolymers, at different PMI and AN feed contents, were investigated by TBA, TGA, and the Vicat softening point test. The results show that the glass transition temperature (Tg) and decomposition temperature of the terpolymers increase with increasing PMI feed content. Furthermore, the Vicat softening points of the terpolymers increase with the PMI feed content. The M?w and M?n of the terpolymers were also determined by GPC. The results show that the M?w and M?n of the terpolymers have a maximum value in the range of 0–30% PMI feed content and decrease with an increasing AN feed content. The mechanical properties (tensile strength and impact strength) of the terpolymers decrease with an increasing PMI feed content and increase with an increasing AN feed content. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2455–2462, 2001  相似文献   

4.
The free‐radical copolymerization of methyl methacrylate (MMA) with NP‐tolylmalemide (NPTMI) at 77°C in cyclohexanone solution initiated by AIBN was studied. The copolymer composition was calculated from the nitrogen content estimated by the Mico–Kijedldahl's method and by elemental analysis. The reactivity ratios have been calculated by Fineman and Ross method. The monomer reactivity ratios were rNPTMI = 1.24, rMMA = 2.1. The glass transition temperature (Tg) of the copolymers were determined by torsion braid analysis (TBA). The thermal stability was determined by thermogravimetric analysis (TGA). T50, temperature at which the weight loss reaches 50%, was abstained. The results showed that the M n and M w increased, whereas the NPTMI feed content increased. The Tg and T50 increased dramatically. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 867–870, 2004  相似文献   

5.
Terpolymers of methyl methacrylate (MMA), N‐phenylmaleimide (PMI) and styrene (St) were synthesized by emulsion copolymerization. The thermal stabilities of terpolymers were studied by a programmed thermogravimetric analysis (TGA) technique. Terpolymers show a considerable increase in decomposition temperature with increasing feed content of PMI and St. The glass transition temperatures (Tg) of copolyniers were measured by differential scanning calorimetry (DSC) and torsional braid analysis (TBA). The terpolymer's Tg increases markedly with the increasing PMI feed content, while it decreases with increasing St feed content. The rheological behaviors of copolymers were also studied. The terpolymer's apparent viscosity in melt decreases with increasing feed contents of PMI and St. The terpolymer's flow index n increases with the increasing feed content of PMI. The results also show that the difference value between TgDSC and TgTBA ' ΔTg increases with an increase in the terpolymer's flow index. M?w and M?n of copolymers were also determined by gel permeation chromatography (GPC).  相似文献   

6.
Poly(MMA‐ran‐St) samples were synthesized under monomer‐starved conditions (drop feeding method) by emulsion copolymerization. Their thermostability was determined by thermogravimetric analysis. The glass transition temperature (Tg) of the copolymers was determined by differential scanning calorimetry (DSC) and torsional braid analysis (TBA). The results showed that the MMA–St copolymers exhibit an asymmetric Tg versus composition curve, which could not be interpreted by Johnston's equation, taking the different contributions of the diads to the Tg of the copolymer into consideration. A new sequence distribution equation taking into account the different contributions of the triads was proposed to predict the copolymer Tg. The new equation fitted the experimental data exactly. The Tg determined by torsional braid analysis (TBA) is higher than the one determined by DSC, but the difference is not constant. The rheological behaviour of the copolymers was also studied and TgTBATgDSC increased with the increasing flow index of the copolymer. © 2003 Society of Chemical Industry  相似文献   

7.
Emulsion‐polymerized copolymers of methyl methacrylate and N‐cyclohexylmaleimide were synthesized and used for blending with poly(vinyl chloride) (PVC) to improve the heat resistance of PVC. The thermal stabilities of the blends with different copolymer contents were characterized by thermogravimetric analysis, torsional braid analysis, and the Vicat softening temperature. The mechanical properties and rheological behavior of the blends were also determined. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 201–205, 2003  相似文献   

8.
Copolymers of N‐cyclohexylmaleimide (ChMI) and methyl methacrylate (MMA) were synthesized by the emulsion semibatch copolymerization method. The effects of the monomer mixture composition on the average molecular weight (Mn and Mw ), glass transition temperature (Tg), degradation temperature, mechanical properties, and rheological behavior of the copolymers were investigated. The results show that Mn and Mw have maximum values when the ChMI feed content was about 20% (by wt). The degradation temperature and Tg of the copolymers increase with increasing ChMI moieties in the copolymer. The mechanical properties (tensile strength and impact strength) decrease with an increasing ChMI feed content. All copolymers in the melt show pseudoplastic behavior. The flow index n increases with an increasing ChMI feed content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1070–1075, 2002; DOI 10.1002/app.10394  相似文献   

9.
Terpolymers of methyl methacrylate (MMA), N-phenylmaleimide (PMI) and styrene (St) were synthesized by emulsion copolymerization. The glass transition temperatures (Tg) and the thermostability of copolymers were determined by differential scanning calorimetry (DSC) and programmed thermogravimetric analysis (TGA), respectively. The terpolymers show a considerable increase in decomposition temperature, activation energy of decomposition and Tg with increasing content of PMI. Furthermore, the Vicat softening points of the terpolymers rise with PMI content. The mechanical properties (tensile strength and impact strength) of the terpolymers decrease with increasing PMI content and increase insignificantly with increasing St content.  相似文献   

10.
N‐phenylmaleimide(NPMI)‐styrene(St)‐maleic anhydride (MAH) copolymer was synthesized in xylene solution by one‐step free radical copolymerization, using di‐tert‐butyl diperoxyterephthalate as initiator. The resulting heat‐resistant NPMI‐St‐MAH (NSM) copolymer was characterized by Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography, differential scanning calorimetry, elemental analysis, and nuclear magnetic resonance spectroscopy (1H‐NMR and 13C‐NMR). The results show that NPMI‐St‐MAH exhibits a random sequence distribution with a NPMI: St: MAH weight ratio of 47:51:2. The glass transition temperature (Tg) is about 190.0°C. Blends of acrylonitrile‐butadiene‐styrene (ABS) with various contents of NSM were prepared using a twin‐screw extruder, and the effects of NSM content on the thermal and mechanical properties of ABS blends were investigated. It was found that the Vicat softening point, tensile strength, flexural strength, flexural modulus, and Rockwell hardness of the ABS/NSM blends were all significantly enhanced with increasing NSM content, whereas the impact strength shows the opposite trend. The impact fracture surface morphology was characterized by scanning electron microscope. It was revealed that cavitation and cavity coalescence resulted in the toughening of the material, which well accounts for the decrease of impact strength with increasing NSM content. In addition, the rheological properties of the blends were examined using a capillary rheometer. The blends present excellent processing property and are suitable for injection molding, although a pseudoplastic behavior was observed in all cases. POLYM. COMPOS., 34:920–928, 2013. © 2013 Society of Plastics Engineers  相似文献   

11.
Terpolymers of N‐phenylmaleimide (PMI), styrene, and acrylonitrile (AN) were synthesized by emulsion polymerization. The thermal properties of terpolymers at different PMI and AN feed contents were investigated by differential scanning calorimetry, torsional braid analysis, thermogravimetric analysis, and a Vicat softening point test. The results showed the glass‐transition temperature and decomposition temperature of the terpolymers increased with increasing PMI feed content. Furthermore, the Vicat softening point of the terpolymers rose with PMI feed content. The weight‐ and number‐average molecular weights (M̄w and n) of the terpolymers were also determined by gel permeation chromatography. The results showed that the w and n of the terpolymers decreased with increasing PMI feed content and increased with increasing AN feed content. The mechanical properties (tensile strength and impact strength) of the terpolymers decreased with increasing PMI feed content and increased with increasing AN feed content. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1067–1073, 2001  相似文献   

12.
The rheological behavior of partially hydrolyzed poly(vinyl acetate-co-ethylene) (VAE) was investigated, using a Rheometrics Dynamic Mechanical Spectrometer. For the investigation, measurements of storage modulus (G′), loss modulus (G″) and loss tangent (tan δ) of the materials were recorded as functions of temperature at a fixed frequency (i.e., using temperature scans) and, also, as functions of frequency at a fixed temperature (i.e., using frequency scans). For the hydrolysis, three different grades of copolymer (containing 34, 47, 62 mol% of vinyl acetate) were used to yield poly(vinyl acetate-co-ethylene-co-vinyl alcohol) (VAEOH) with varying amounts of hydroxyl group. For comparison purposes, the viscoelastic properties of blends of VAE copolymer with poly(vinyl alcohol) (PVOH), having varying blend compositions, were also measured. The blends were prepared by first mixing a solution of VAE copolymer, which was dissolved in a toluene/dichloroethane mixed solvent, and an aqueous solution of PVOH, and then freeze drying the mixture to a constant weight. Also measured were the glass transition temperature (Tg) of the VAE copolymers and the Tg and melting point (Tm) of the VAEOH terpolymers, using a DuPont Thermal Analyzer equipped with a 910 DSC Module. It has been found that (1) introduction of hydroxyl group into the backbone of the amorphous VAE copolymer has made the resulting VAEOH terpolymer semicrystalline; (2) the Tm, Tg, G′, and the complex viscosity (η*) of the VAEOH terpolymers increase with increasing amounts of hydroxyl group; (3) the physical blending of PVOH with VAE copolymer has not affected the Tg of the VAE copolymer; (4) the G′ and η* of the VAE/PVOH blends are found to increase with the amount of PVOH in the blend. The use of logarithmic plots of G′ versus G″ has been found to be very useful for discerning the differences in the structure of the materials tested.  相似文献   

13.
The article describes the preparation of cast acrylic sheets by copolymerizing methyl methacrylate (MMA) with varying mole fractions of N-o-chlorophenyl maleimide (OC), N-m-chlorophenyl maleimide (MC), and N-p-chlorophenyl maleimide (PC) using benzoyl peroxide as an initiator. The effect of incorporation of varying mole fraction of N-chlorophenyl maleimides in poly(methyl methacrylate) backbone on the optical, physicomechanical, and thermal properties of cast acrylic sheets were evaluated. Vicat softening temperature, glass transition temperature (Tg) and thermal stability of the copolymers increased with an increase in the maleimide content. The solar transmittance and percentage of transmittance of the copolymer sheets having low mole fractions of N-chlorophenyl maleimides (i.e., 0.025–0.085) were found to be comparable with that of PMMA. Further increase in the comonomer content resulted in a decrease in the percentage of transmittance. Copolymer sheets having low mole fractions of N-chlorophenyl maleimides (0.025–0.108) have tensile strength comparable to that of PMMA, whereas the percentage of elongation decreased. Tensile modulus increased with increasing mole fraction of N-chlorophenyl maleimides. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 527–534, 1998  相似文献   

14.
用2种分子量不同的苯乙烯-(乙烯/丁烯)-苯乙烯三嵌段共聚物(SEBS)和一种苯乙烯-b-乙烯/丁烯(SEB)两嵌段共聚物为增容剂,对高密度聚乙烯(HDPE)/间规聚苯乙烯(sPS)共混物进行增容.采用扫描电镜(SEM)及拉伸试验研究了增溶剂的分子量及结构对共混物形态结构及力学性能的影响.结果表明:3种增容剂SEBS(SEB)均可有效地降低sPS分散相的尺寸并增加HDPE/sPS共混物的界面强度,从而提高其力学性能.sPS 的掺入可以显著提高HDPE的耐热性能.  相似文献   

15.
Poly(ethylene terephthalate) copolymers were prepared by melt polycondensation of dimethyl terephthalate and excess ethylene glycol with 10–40mol% (in feed) of poly(ethylene glycol) (E) and poly(tetramethylene glycol) (B), with molecular weight (MW) of E and B 200–7500 and 1000, respectively. The reduced specific viscosity of copolymers increased with increasing MW and content of polyglycol comonomer. The temperature of melting (Tm), cold crystallization and glass transition (Tg) decreased with the copolymerization. Tm depression of copolymers suggested that the E series copolymers are the block type at higher content of the comonomer. Tg was decreased below room temperature by the copolymerization, which affected the crystallinity and the density of copolymer films. Water absorption increased with increasing content of comonomer, and the increase was much higher for E1000 series films than B1000 series films. The biodegradability was estimated by weight loss of copolymer films in buffer solution with and without a lipase at 37°C. The weight loss was enhanced a little by the presence of a lipase, and increased abruptly at higher comonomer content, which was correlated to the water absorption and the concentration of ester linkages between PET and PEG segments. The weight loss of B series films was much lower than that of E series films. The abrupt increase of the weight loss by alkaline hydrolysis is almost consistent with that by biodegradation.  相似文献   

16.
Poly(methyl methacrylate‐ran‐styrene) copolymers were synthesized under monomer‐starved conditions by emulsion copolymerization. The glass‐transition temperatures (Tg's) of the copolymers were measured by differential scanning calorimetry (DSC) and torsional braid analysis (TBA). The results showed that the methyl methacrylate–styrene random copolymers produced an asymmetric Tg versus composition curve, which could not even be interpreted by the Johnston equation with different contributions of dyads to the Tg of the copolymer considered. A new sequence distribution equation concerning different contributions of triads was introduced to predict the copolymer's Tg. The new equation fit the experimental data exactly. Also, the Tg determined by TBA (TgTBA) was higher than the one determined by DSC (TgDSC) and the difference was not constant. The rheological behavior of the copolymers was also studied. TgTBA ? TgDSC increased with increasing flow index of the melt of the copolymer, and the reason was interpreted. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2891–2896, 2003  相似文献   

17.
Three benzoxazines based on o‐allylphenol and 1,6‐hexamethylenediamine (HDA) or 4,4′‐diaminodiphenyl methane (DDM) or 4,4′‐diaminodiphenyl ether (DDE) were respectively blended with diglycidyl ether of bisphenol‐A (DGEBA) in various weight ratios followed by thermal polymerization to prepare three series of benzoxazine/DGEBA copolymers. With increasing DGEBA content, the peak temperature of the exothermic peaks in the DSC curves shows a systematic increase for the three series of benzoxazine/DGEBA blends. Each copolymer shows a single glass transition temperature (Tg). As the content of DGEBA is increased, Tg reaches a minimum for the copolymer system based on HDA but a maximum for the two systems based on DDM and DDE. For the same benzoxazine/DGEBA weight ratio, copolymers based on DDM and DDE show high Tg values over those based on HDA. The three series of benzoxazine/DGEBA copolymers exhibit a one‐way dual shape memory effect based on Tg, and the shape memory properties of the copolymers under tensile deformation mode vary with the variation of both diamine bridge structure and DGEBA content. © 2018 Society of Chemical Industry  相似文献   

18.
The effect of propylene–ethylene copolymers (PEc) with different ethylene‐unit contents on melting and crystallization behaviors of isotactic‐polypropylene (iPP) were investigated by differential scanning calorimetry (DSC) and polarized light microscopy (PLM). The results show that the addition of PEc decreases significantly crystallization temperature (Tc) of iPP, but slightly affects melting temperature (Tm). With increasing the ethylene‐unit content of the propylene–ethylene copolymers, the decrease in crystallization temperature of iPP is smaller. The PLM results show that the spherulite growth rate decreases with increasing crystallization temperature for iPP and iPP/PEc blends. The higher the ethylene‐unit content of the copolymers is, the lower the spherulite growth rate (G) of iPP/PEc blends is. The influence of the PEc on nucleation rate constant (Kg) and fold surface energy (σe) of iPP was examined by nucleation theory of Hoffman and Lauritzen. The results show that both Kg and σe of iPP/PE20(80/20) and iPP/PE23(80/20) blends are higher than those of iPP, demonstrating that the overall crystallization rate of iPP/PEc blends decreased as compared to that of iPP, resulting from the decrease of the nucleation rate and the spherulite growth rate of iPP. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Poly(ethylene isophthalate‐co‐ethylene terephthalate) (PEIPET) copolymers of various compositions and molecular weights were synthesized by melt polycondensation and characterized in terms of chemical structure and thermal and rheological properties. At room temperature, all copolymers were amorphous and thermally stable up to about 400°C. The main effect of copolymerization was a monotonic increase of glass transition temperature (Tg) as the content of ethylene terephthalate units increased. The Fox equation accurately describes the Tg–composition data. The presence of ethylene terephthalate units was found to influence rheological behavior in the melt, with the Newtonian viscosity increasing as the content of ethylene terephthalate units increased. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 186–193, 2004  相似文献   

20.
N‐cyclohexylmaleimide (ChMI) and styrene (St) were polymerized with methyl methacrylate (MMA) at different St feed content by suspension polymerization method. The glass transition temperatures (Tg) of the terpolymers were detected by torsional braid analysis (TBA). Two transition peaks in TBA curves of the terpolymers with a high St content illustrated that these terpolymers have a heterogeneous chain structure and the phase separation occurred. The lower transition temperature, Tg1, was assigned to the random St‐MMA components, and the higher transition temperature, Tg2, was assigned to the St‐ChMI units‐rich segments. Thermogravimetric analyses (TGA) revealed that all the terpolymers showed a two‐step degradation process. The tensile strength of the terpolymers decrease with increasing St content while the impact strength tended to increase slightly. The rheological behavior of the terpolymers was also detected. The result illustrated that the terpolymers showed rheological behavior similar to that of pseudoplastic liquid. The apparent shear viscosity decreased with the increasing of St content. All terpolymers have a higher value of flow n than the poly(MMA‐co‐ChMI). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 918–922, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号