首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocomposites of linear low-density polyethylene (LLDPE)/natural rubber (NR)/liquid natural rubber (LNR) blend denoted as TPNR with montmorillonite-based organoclay (OMMT) were prepared using melt blending method. The melt blending of LLDPE/NR/LNR with a composition of 70:20:10 formed blends. For better dispersion of nanoclay in the TPNR blend, MA-PE was used as a coupling agent. The nanoclay dispersion was investigated by X-ray diffraction (XRD), and a novel method using permeability measurements data in a permeability model. The measured d-spacing data proved a good dispersion of nanoclay at low clay contents. The permeability model for flake-filled polymer was used to estimate the aspect ratio of nanoclay platelets in the blend nanocomposites. The oxygen barrier property of the TPNR blend improved about two-fold by adding only 2 wt% of organoclay. Differential scanning calorimetry showed an increase in cystallinity up to 20% suggesting an increase in spherulite growth, by the increased in melting temperature. The increase in the barrier property of the blend with the induction in crystallinity indicates the dominant role of organoclay platelets in barrier improvement. Scanning electron micrographs of tensile fracture surface of the nanocomposite, exhibited a very ductile surface indicating a good compatibility of LLDPE and NR and also, a possible contribution of nanoparticles to the deformation mechanism, such as extensive shear yielding in the polymer blend. The transmission electron micrograph, showed an intensive intercalation structure and exfoliation structure with the presence of MA-PE.  相似文献   

2.
EVOH/clay nanocomposite films were prepared by using four types of surfactants to treat surface of clay because the surfactants were expected to affect the degree of clay dispersion in the EVOH matrix, which would in turn affect the properties of film. The nanocomposite films that contained the single alkyl tail with two repeating units of oxyethylene surfactants or single alkyl tail surfactant showed higher tensile strength, tensile modulus and elongation at break than those with 15 repeating units of oxyethylene surfactants or those with double alkyl tail surfactant.  相似文献   

3.
Sodium montmorillonite (Na-MMT) was successfully modified by octadecylamine (ODA) through a cation exchange technique that showed by the increased of basal spacing of clay by XRD. The addition of the organoclay into the PBS/PBAT blends produced intercalated-type nanocomposites with improvements in tensile modulus and strength. The highest tensile strength of nanocomposite was observed at 1 wt% of organoclay incorporated. A TGA study showed that the thermal stability of the blend increased after the addition of the organoclay by 1 wt%. SEM micrographs of the fracture surfaces show that the morphology of the blend becomes smoother with presence of organoclay.  相似文献   

4.
Ethylene vinyl acetate (EVA)/natural rubber (SMR L)/organoclay thermoplastic elastomer nanocomposites were melt compounded in an internal mixer, Haake Rheometer, at 120°C and 50 rpm rotor speed. In this paper, we demonstrate the effect of different blending sequences and organoclay loading from 2 to 10 phr (parts per hundred resins) on the tensile properties, morphology, thermal degradation, flammability, and water absorption behavior of EVA/SMR L/organoclay nanocomposites. EVA/SMR L/organoclay TPE nanocomposites were prepared by three different blending sequences, and each exhibited different tensile properties. Results indicated that the presence of organoclay increases the tensile properties, resistance toward thermal degradation, resistance to water permeation, and flame retardancy for all the nanocomposites prepared via different blending sequences. However, the optimum results for all the properties studied were achieved when EVA was blended with organoclay first and SMR L was incorporated later into the blend. The optimum organoclay loading was achieved at 2 phr. Results from scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies showed that at 2 phr organoclay loading, nanostructures of individual silicate layers were achieved, whereas at 8 phr organoclay loading, agglomeration was observed. Flammability of the nanocomposites decreased when the organoclay loading increased.  相似文献   

5.
In this work, clay-based nanocomposites films were prepared by addition of clay-Na+ natural montmorillonite in pectin and hydroxypropyl methylcellulose (HPMC) matrices. Mechanical (tensile strength, elastic modulus, and elongation) and barrier (Water Vapor Permeability (WVP), and Oxygen permeability (O2P)) properties were investigated. From results, it was observed that the WVP and O2P decreased when nanoclay was included into the HPMC and pectin matrix films. Additionally, the incorporation of nanoclay in the films significantly improved the mechanical properties because the reinforcing effect of clay from its high aspect ratio and its enormous surface area. These results are very important in packaging area.  相似文献   

6.
Thermoplastic natural rubber (TPNR) as polymer matrix was prepared by the melt blending method. Nickel-cobalt-zinc (NiCoZn) ferrite as a filler was prepared by the double-stage sintering method in air. The filler was incorporated in the polymer matrix using a Brabender internal mixer. The filler content was varied from 0 to 30 wt.%. The morphological study of the fractured surface using a scanning electron microscope (SEM) shows the effects of strain. The X-ray diffraction (XRD) indicates the coexistence of both the ferrite and thermoplastic. Electrical properties were studied using a high frequency response analyzer (HFRA) at room temperature (298°K). The results show that resistivity (ρ) decreases, but the dielectric constant increases, with increasing filler content. The resistivity and dielectric constant for all the composites are in the range of 8.9 × 106–9.7 × 105 Ωm and 33–72, respectively. A sharp change in both quantities around 15 wt.% filler content is interpreted as due to the transition from a dispersed system to an attached system. The tensile study shows that the elongation at break point and the tensile strength of the composite at room temperature decrease with increasing filler content. The hardness of the samples decreases with increasing filler content.  相似文献   

7.
Organoclay filled natural rubber (NR) nanocomposites were prepared using a laboratory two-roll mill. The effect of organoclay loading up to 10 phr was studied. The vulcanized nanocomposites were subjected to mechanical, thermal, and swelling tests. The results indicated that the tensile strength and elongation at break reached optimum at 4 phr of organoclay loading, and the incorporation of organoclay increased the tensile modulus and hardness of NR nanocomposites. The thermal degradation was shifted to a higher temperature and the weight loss decreased with incorporation of organoclay. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were employed to characterize the microstructure of NR nanocomposites. Results from TEM and XRD show the formation of intercalated and exfoliated individual silicate layers of organoclay filled NR nanocomposites particularly at low filler loading (< 4 phr).  相似文献   

8.
The objective of this work was to investigate the effect of elastomer polarity on phase structure and mechanical properties of PP nanocomposites. The nonpolar and polar elastomers studied were polyethylene octene (POE) and polyethylene octene grafted maleic anhydride (POEgMAH), respectively. The results from mechanical studies showed that the POEgMAH-toughened polypropylene nanocomposites have higher Izod impact strength but lower tensile and flexural properties than the unmaleated ones. X-ray diffraction (XRD) was used to characterize the formation of nanocomposites. XRD studies revealed that intercalated rubber-toughened PP nanocomposites (RTPPNC) had been successfully prepared where the macromolecule segments PP were intercalated into the interlayer space of organoclay. XRD also indicated that the incorporation of polar POEgMAH elastomers into PP nanocomposites contribute to a better intercalation effect and formed a more exfoliated combinations structure compared to POE. Scanning electron microscope (SEM) was used for the investigation of the phase morphology and rubber particle size and particle-size distribution. SEM study revealed a two-phase morphology where POE as droplets dispersed finely and uniformly in the PP matrix. The POEgMAH-toughened PP nanocomposites shows a much finer dispersion of elastomer particles than POE-toughened PP nanocomposites.  相似文献   

9.
Tensile properties of polyethylene-layered silicate nanocomposites   总被引:1,自引:0,他引:1  
Maged A. Osman 《Polymer》2005,46(5):1653-1660
The sodium ions of clays with different cation exchange capacities (CEC) have been exchanged with alkyl ammonium ions, in which 1-4 octadecyl chains are attached to the nitrogen atom. Due to the different cation cross-sectional area to available area per cation ratio, the resulting organo-montmorillonites (OMs) have different organic surface coverage and alkyl chain packing density. Nanocomposites of these OMs and HDPE were prepared and the influence of the organic monolayer structure on the exfoliation of montmorillonite and the tensile properties of the composites was studied. A high cation cross-sectional area to available area ratio led to complete surface coverage and large d-spacing, favoring the dispersion of the filler. In spite of the identical chemical structure of the polymer and the organic monolayer, complete exfoliation was not attained. Partial exfoliation was achieved without a compatiblizer, which often adversely affect the mechanical properties of the composites. Enhanced exfoliation increased the elastic modulus and yield stress but decreased the yield strain and stress at break of the nanocomposites. Increased filler loading enhanced the elastic modulus but decreased all other tensile properties. The tensile properties were correlated to the volume fraction of the inorganic part of the OMs and not to the total volume of the OM. Fitting the elastic modulus data to the Halpin-Tsai equation showed that the fitting parameter in this equation is not only related to the aspect ratio of the inclusions.  相似文献   

10.
Thermoplastic natural rubber (TPNR) hybrid composite with short glass fiber (GF) and empty fruit bunch (EFB) fiber were prepared via the melt blending method using an internal mixer type Thermo Haake 600p. The TPNR were prepared from natural rubber (NR), liquid natural rubber (LNR) and polypropylene (PP) thermoplastic, with a ratio of 20:10:70. The hybrid composites were prepared at various ratios of GF/EFB with 20% volume fraction. Premixture was performed before the material was discharged into the machine. The study also focused on the effect of fiber (glass and EFB) treatment using silane and maleic anhydride grafted polypropylene (MAgPP) as a coupling agent. In general, composite that contains 10% EFB/10% glass fiber gave an optimum tensile and impact strength for treated and untreated hybrid composites. Tensile properties increase with addition of a coupling agent because of the existence of adherence as shown in the scanning electron microscopy (SEM) micrograph. Further addition of EFB exceeding 10% reduced the Young's modulus and impact strength. However, the hardness increases with the addition of EFB fiber for the untreated composite and decreases for the treated composite.  相似文献   

11.
Blend rubber films were prepared by mixing styrene grafted rubber latex and natural rubber latex (NRL) with varying proportions by gamma radiation from Co-60 source at room temperature. Tensile strength, modulus at 500% elongation, elongation at break, permanent set, and swelling ratio were measured. Tensile strength and modulus at 500% elongation attain maximum at 8 kGy radiation dose for blend rubber films. The increase in tensile strength is insignificant, but modulus increases from 5.61 to 7.46 MPa with increased proportion of grafted rubber latex from 40 to 70% in the blend at this radiation dose. Elongation at break, permanent set, and swelling ratio of blend rubber decreases with increase in radiation dose as well as proportion of grafted rubber.  相似文献   

12.
The present work aims to study the relationship among the thermal ageing stability, dynamic properties, cure systems, and antioxidants in natural rubber (NR) vulcanisates. Thermal degradation behavior of NR vulcanisates has been investigated and correlated to the changes in cross-link density, tensile and dynamic mechanical properties. The results obtained show that thermal ageing properties of NR vulcanisates depend strongly on cross-link density, which changes during thermal oxidative ageing or the so-called postcuring effect. In addition, the increases in ageing temperature and time lead dominantly to the postcuring and linkages scission phenomena in vulcanisates cured with CV and EV systems, respectively. With increasing ageing temperature, the tensile strength shows sharp drop at ageing temperature higher than 70°C and 100°C for the specimens cured with CV and EV systems, respectively. The sharp drop of tensile strength of vulcanisates cured with CV system is attributed to the too high cross-link density, which is caused by the postcuring effect. In the case of the vulcanisates cured with EV system, the linkage scission causes the sharp drop of tensile strength. The addition of amine-based antioxidant appears to improve ageing properties. However, the excessive antioxidant reduces tensile properties via a decrease in cross-link density.  相似文献   

13.
In the present investigation Polypropylene–Maleic anhydride grafted polypropylene–organically modified MMT (PP-MAPP-OMMT) nanocomposites were prepared by melt mixing in a twin screw extruder followed by injection molding. The effect of clay chemistry and compatibilizer on the properties of the nanocomposites has been studied. Sodium montmorillonite has been organically modified using quaternary and alkyl amine intercalants. A comparative account with commercial quaternary ammonium modified clays i.e Cloisite 20A, Cloisite 15A and Cloisite 30B has been presented. Storage modulus of PP matrix also increased in the nanocomposites, indicating an increase in the stiffness of the matrix polymer with the addition of organically modified nanoclays. The morphology of the nanocomposites has been examined using wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). Morphological findings revealed efficient dispersion of organically modified nanoclays within the PP matrix. MAPP compatibilized PP/Cloisite 15A nanocomposites displayed finely dispersed exfoliated nanomorphology as compared with other systems.  相似文献   

14.
Summary: We have prepared waterborne polyurethane (WBPU) thin films containing gold nanoparticles by casting WBPU/Au solutions. The effect of the Au nanoparticle contents on the microstructure and properties of the composite films was investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), field emission scanning electron microscopy (FESEM), transmittance electron microscopy (TEM), FTIR spectroscopy (FTIR) and dynamic mechanical analysis (DMA). The Au nanoparticles initially in the WBPU solution were well dispersed in the WBPU films cast and dried at 60 °C. The thermostability and mechanical properties of the polymer increased with Au contents up to 4.35 × 10?2 wt.‐%, which was believed to be a result of induced crystallization in the presence of Au nanoparticles. The Au/WBPU nanocomposite containing with 6.5 × 10?2 wt.‐% of Au resulted in the aggregation of Au particles, which leads to a worsening of the thermal and mechanical properties.

TEM micrograph of nanocomposites filled with 4.35 × 10?2 wt.‐% of Au nanoparticles.  相似文献   


15.
以ANA发射药为例研究用动态热机械分析(DMA)测定动态力学性能预估破坏(极限)抗压强度σb和极限压缩率λb的方法,应用与动态模量叠合主曲线相同的水平位移因子,极限抗压强度和压缩率的数据分别与动态储能模量和储能柔量主曲线有限好的叠合。结果表明,σb和λb的预估值与实测值的偏差均在测试误差范围内。  相似文献   

16.
The damping properties of ethylene-propylene-diene rubber (EPDM) with aliphatic hydrocarbon (C94) resin were investigated by dynamic mechanical analysis (DMA). It was found that the damping property of EPDM was improved after addition of aliphatic hydrocarbon resin. With increasing content of the resin, the main tan δ peak shifted to higher temperatures and the valid damping range in temperature was broadened. An addition of mica or NBR was found to widen the effective damping range. After addition of NBR into EPDM, the effective damping range of the blends was evidently extended in the applicable temperature region, especially when NBR content was 50 wt%. It was concluded that the NBR was incompatible with EPDM, and there existed two tan δ peaks in DMA spectra.  相似文献   

17.
橡胶纳米复合材料的制备与性能   总被引:3,自引:1,他引:3  
综述了橡胶纳米复合材料的制备方法及其结构与性能之间的关系。  相似文献   

18.
The structural and mechanical properties of natural rubber (NR) nanocomposites filled with starch nanocrystals (SNC) extracted from four different starch sources are investigated. The aim of this work is to explore the influence of botanic sources on final properties of nanocomposites and SNC reinforcing capability. A general trend seems to be that the higher the amylose content of native starch granules used for preparing SNC, the lower the water uptake and reinforcing effect (except for potato starch). It is postulated that SNC prepared from higher amylose content starch might release loosely bonded amylose chains during preparation and/or soaking in water and thus prevent SNC to participate in the formation of a reinforcing network.

  相似文献   


19.
Natural rubber compounds were prepared with different kenaf/HNT ratio loading i.e., 30/0, 20/10, 15/15, 10/20, 0/30 (phr/phr). The compounds were cured at 150°C according to its t90. Curing characteristic, tensile properties, fatigue, rubber-filler interaction and morphological properties of the compounds were tested. Curing characteristics show that scorch time and cure time increased with increasing of HNT ratio loading while minimum and maximum torque decreased. When HNT ratio loading was increased, tensile strength and elongation at break and fatigue life increased while tensile modulus decreased. Swelling measurement and morphological study showed that better rubber-filler interaction was obtained with higher HNT ratio loading.  相似文献   

20.
将增强体亚麻纱线和基体丙纶复丝制成pp/亚麻包覆纱后,进行织造,织物用层合热压法制成复合材料.制备工艺中,包覆纱法对复合材料的拉伸强度最好;麻含量50%的复合材料的拉伸强度达到最佳;当纬纱密度相同时,随着经纱密度的增大经向的拉伸强力和拉伸弹性模量也随之增大,而纬向的却随之减小,当经纱密度相同时,随着纬纱密度的增大,经向的拉伸强力和拉伸弹性模量随之减小,纬向的随之增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号