首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of blends of poly(lactic acid) (PLA) and poly(ε-caprolactone) (PCL) with different mass ratio were prepared by means of the melt blending method to study their crystallization, miscibility, morphology, and thermal and mechanical properties. The result of DSC tests showed that the melting temperatures of PLA and PCL shifted toward each other, and that the largest shift appeared at the PLA70PCL30 blend. This result reveals that the PLA70PCL30 blend gives the strongest interaction intensity among the blends. Combined the result of dynamic mechanical analysis and SEM morphologies, it was found that PLA and PCL form a partial miscible blend, in which an amount of amorphous PCL (amorphous PLA) is dissolved in the PLA-rich phase (PCL-rich phase), leading to a depression of the Tg. value. The polarized optical micrographs showed that PCL can serve as a nucleating agent to promote PLA crystallization in the PLA/PCL blend. Moreover, the PLA70PCL30 blend gave the largest growth rate of PLA spherulite. Finally, the mechanical property of PLA/PCL blends indicated that PLA can easily be tuned from rigid to ductile by the addition of PCL.  相似文献   

2.
Blending poly(ethylene glycol) (PEG) with poly(lactide) (PLA) decreases the Tg and improves the mechanical properties. The blends have lower modulus and increased fracture strain compared to PLA. However, the blends become increasingly rigid over time at ambient conditions. Previously, it was demonstrated that a PLA of lower stereoregularity was miscible with up to 30 wt% PEG. Aging was due to slow crystallization of PEG from the homogeneous amorphous blend. Crystallization of PEG depleted the amorphous phase of PEG and gradually increased the Tg until aging essentially ceased when Tg of the amorphous phase reached the aging temperature. In the present study, this aging mechanism was tested with a crystallizable PLA of higher stereoregularity. Changes in thermal transitions, solid state structure, and mechanical properties were examined over time. Blends with up to 20 wt% PEG were miscible. Blends with 30 wt% PEG could be quenched from the melt to the homogenous amorphous glass. However, this composition phase separated at ambient temperature with little or no crystallization. Changes in mechanical properties during phase separation reflected increasing rigidity of the continuous PLA-rich phase as it became richer in PLA. Construction of a phase diagram for blends of higher stereoregular PLA with PEG was attempted.  相似文献   

3.
Four blends of poly(hydroxybutyrate) (PHB) and poly(butylene succinate) (PBSU), both biodegradable semicrystalline polyesters, were prepared with the ratio of PHB/PBSU ranging from 80/20 to 20/80 by co-dissolving the two polyesters in N,N-dimethylformamide and casting the mixture. Differential scanning calorimetry (DSC) and optical microscopy (OM) were used to probe the miscibility of PHB/PBSU blends. Experimental results indicated that PHB showed some limited miscibility with PBSU for PHB/PBSU 20/80 blend as evidenced by the small change in the glass transition temperature and the depression of the equilibrium melting point temperature of the high melting point component PHB. However, PHB showed immiscibility with PBSU for the other three blends as shown by the existence of unchanged composition independent glass transition temperature and the biphasic melt. Nonisothermal crystallization of PHB/PBSU blends was investigated by DSC using various cooling rates from 2.5 to 10 °C/min. During the nonisothermal crystallization, despite the cooling rates used two crystallization peak temperatures were found for PHB/PBSU 40/60 and 60/40 blends, corresponding to the crystallization of PHB and PBSU, respectively, whereas only one crystallization peak temperature was observed for PHB/PBSU 80/20 and 20/80 blends. However, it was found that after the nonisothermal crystallization the crystals of PHB and PBSU actually co-existed in PHB/PBSU 80/20 and 20/80 blends from the two melting endotherms observed in the subsequent DSC melting traces, corresponding to the melting of PHB and PBSU crystals, respectively. The subsequent melting behavior was also studied after the nonisothermal crystallization. In some cases, double melting behavior was found for both PHB and PBSU, which was influenced by the cooling rates used and the blend composition.  相似文献   

4.
Physical blends of poly(ethylene terephthalate) (PET) and poly(ethylene isophthalate) (PEI), abbreviated PET/PEI (80/20) blends, and of PET and a random poly(ethylene terephthalate‐co‐isophthalate) copolymer containing 40% ethylene isophthalate (PET60I40), abbreviated PET/PET60I40 (50/50) blends, were melt‐mixed at 270°C for different reactive blending times to give a series of copolymers containing 20 mol % of ethylene isophthalic units with different degrees of randomness. 13C‐NMR spectroscopy precisely determined the microstructure of the blends. The thermal and mechanical properties of the blends were evaluated by DSC and tensile assays, and the obtained results were compared with those obtained for PET and a statistically random PETI copolymer with the same composition. The microstructure of the blends gradually changed from a physical blend into a block copolymer, and finally into a random copolymer with the advance of transreaction time. The melting temperature and enthalpy of the blends decreased with the progress of melt‐mixing. Isothermal crystallization studies carried out on molten samples revealed the same trend for the crystallization rate. The effect of reaction time on crystallizability was more pronounced in the case of the PET/PET60I40 (50/50) blends. The Young's modulus of the melt‐mixed blends was comparable to that of PET, whereas the maximum tensile stress decreased with respect to that of PET. All blend samples showed a noticeable brittleness. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3076–3086, 2003  相似文献   

5.
Poly (lactic acid) (PLA) is an important biodegradable plastic with unique properties. However, its widespread application is hindered by its low miscibility and suboptimal degradation properties. To overcome these limitations, we investigated the mechanical, thermal, and degradation properties of PLA and poly (butylene sebacate-co-terephthalate) (PBSeT) blends in the presence of poly (ethylene oxide) (PEO). Specifically, this study aimed to identify the effects of PEO as a compatibilizer and hydrolysis accelerator in PLA/PBSeT blends. PLA (80%) and PBSeT (20%) were melt blended with various PEO contents (2–10 phr), and their mechanical, thermal, and hydrolytic properties were analyzed. All PEO-treated blends exhibited a higher elongation at break than that of the control sample, and the tensile strength was slightly reduced. In the PEO 10% sample, the elongation at break increased to 800% of that of the control sample. Differential scanning chromatography (DSC) analysis confirmed that when PEO was added to the PLA/PBSeT blends, the two glass transition temperatures (Tg) narrowed, resulting in improved miscibility of PLA and PBSeT. In addition, the hydrolytic degradation of the PLA/PBSeT/PEO blend accelerated as the PEO content increased. It was confirmed that PEO can act as a compatibilizer and hydrolysis-accelerating agent for PLA/PBSeT blends.  相似文献   

6.
Blends of two semicrystalline polymers, poly(L ‐lactic acid) (PLLA) and poly‐p‐dioxanone (PPD) have been prepared by solvent casting in different compositions. Thermal, morphological, and mechanical properties of the blends were studied using modulated differential scanning calorimetry, wide‐angle X‐ray diffractometry, scanning electron microscopy (SEM), polarizing light microscopy (PLM), and tensile tests. Thermal analysis showed two glass transition temperatures nearly constant and equal to the values of the homopolymers and constant values of melting temperature (Tm) for all blend compositions, suggesting that both polymers are immiscible. The PLM and SEM observations validated these results, and showed the different morphology obtained by changing the composition of the blend. The blends 40/60, 50/50, and 60/40 presented a clearly macroseparated system, while the 20/80 and 80/20 blends presented better homogeneity, probably due to the low amount of one component in the other. It was found by PLM that PPD is able to crystallize according to a spherulitic morphology when its content is above 40%. Under this content, the crystallization of PPD is hardly observed. The blend 20/80 is more flexible, and tough material and neck formation during elongation is also observed, due to PPD, which may act as a plasticizer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 12: 2744–2755, 2003  相似文献   

7.
A methodology for blending foam of poly (lactic acid) (PLA)/poly (ethylene terephthalate glycol-modified) (PETG) was proposed. PLA/PETG blends were prepared through a melt blending method, using multiple functionality epoxide as reactive compatibilizer. The effects of blending ratio and compatibilizer content on the dispersion morphology, molecular structure, mechanical properties, and rheological behavior of PLA/PETG blends were studied. Then PLA/PETG blends were foamed using supercritical CO2 as physical blowing agent, and their porous structure, pore size, as well as pore density were investigated. The results showed that the mechanical properties and rheological parameters such as melt strength and melt elasticity, as well as the porous structure of the foams dispersion morphology of PLA/PETG blends were affected strongly. The melt elasticity of PLA/PETG blends increased with increasing compatibilizer content. Dispersion phase morphology of PLA/PETG blends also had a significant effect on the pore density of all the samples. The results indicated that homogeneous and finer porous morphology of PLA/PETG foams with high expansion ratio could be achieved with a proper content of compatibilizer in the blends.  相似文献   

8.
Poly(lactic acid)/poly(butylene succinate-co-adipate) (PLA/PBSA) blends are found promising for film packaging applications because of their flexibility, resistance, and compostability. Industrially extruded granules and films based on PLA and containing different amounts of PBSA are reprocessed through mini-extrusion, to simulate recycling, and tested in terms of their melt flow rate as a function of PBSA content. Moreover, pure PLA commercial granules and the film produced extruding the PLA/PBSA 60/40 blend are reprocessed several times by injection molding and characterized in terms of melt flow rate, mechanical properties, thermal properties, and color as a function of injection molding cycles. The variation in melt fluidity and thermo-mechanical properties is negligible up to 3 injection molding cycles for both pure PLA granules and PLA/PBSA blend. In the case of blend the change in color (yellowing and darkening) is more evident and slight local compositional change in injection molded items can be evidenced as well as a slight decrease in PBS crystallinity as a function of injection molding cycles. Nevertheless, in applications where these aspects are not critical, these materials can be recycled by extrusion or injection molding before being composted, thus prolonging their life cycle and storing carbon in them as longer as possible.  相似文献   

9.
X.D HuangS.H Goh 《Polymer》2002,43(4):1417-1421
The miscibility of blends of single [60]fullerene (C60)-end-capped poly(ethylene oxide) (FPEO) or double C60-end-capped poly(ethylene oxide) (FPEOF) with poly(vinyl chloride) (PVC) has been studied. Similar to poly(ethylene oxide) (PEO), both FPEO and FPEOF are also miscible with PVC over the entire composition range. X-ray photoelectron spectroscopy showed the development of a new low-binding-energy Cl2p doublet and a new high-binding-energy O1s peak in FPEO/PVC blends. The results show that the miscibility between FPEO and PVC arises from hydrogen bonding interaction between the α-hydrogen of PVC and the ether oxygen of FPEO. From the melting point depression of PEO, FPEO or FPEOF in the blends, the Flory-Huggins interaction parameters were found to be −0.169, −0.142, −0.093 for PVC/PEO, PVC/FPEO and PVC/FPEOF, respectively, demonstrating that all the three blend systems are miscible in the melt. However, the incorporation of C60 slightly impairs the interaction between PEO and PVC.  相似文献   

10.
ABSTRACT

In this work, poly (lactic acid) (PLA) and elastomer ethylene-butyl acrylate-glycidyl methacrylate terpolymer (EBA-GMA) containing epoxy groups were melt-blended using a novel vane extruder. The solid-state 13C nuclear magnetic resonance spectra (13C-NMR) and the Fourier-transform infrared (FTIR) spectroscopy proved that epoxy groups of EBA-GMA reacted with the carboxylic acid or hydroxyl groups of PLA during melt blending, resulting in a grafted structure which improved the interfacial adhesion of PLA/EBA-GMA blends. The phase morphology, mechanical and thermal properties were investigated to identify the effect of EBA-GMA weight fraction on the properties of PLA/EBA-GMA blends. Thermogravimetric analysis revealed that the incorporation of EBA-GMA improved the thermal stability of PLA. The impact strength of the annealed PLA80/20EBA-GMA binary blend increased up to ten times compared without annealing process.  相似文献   

11.
Poly(butylene succinate) (PBSU) and poly(ε-caprolactone) (PCL) blends, both biodegradable chemosynthetic semicrystalline polyesters, were prepared with the ratio of PBSU/PCL ranging from 80/20 to 20/80 by co-dissolving the two polyesters in chloroform and casting the mixture. The miscibility and crystallization behavior of PBSU/PCL blends were investigated by differential scanning calorimetry and optical microscopy. Experimental results indicated that PBSU was immiscible with PCL as evidenced by the composition independent glass transition temperature and the biphasic melt. However, during the crystallization from the melt at a given cooling rate, the crystallization peak temperature of PBSU in the blends decreased slightly with the increase of PCL, while that of PCL in the blends first increased and then decreased with the increase of PBSU. Moreover, both the crystallization peak temperature of PBSU and PCL shifted to the low temperature range with the increase of the cooling rate for a given blend composition. Double melting peaks or one main melting peak with a shoulder were found for both PBSU and PCL after the complete crystallization cooled from the melt, and were ascribed to the melting-recrystallization mechanism. It was found that the subsequent melting behavior of PBSU/PCL blends was influenced apparently by the blend composition and the cooling rate used.  相似文献   

12.
The oxygen transmission rate, average volume of free‐volume cavities (Vf) and fractional free volume (Fv) of polyamide 6,10 (PA610)/poly(vinyl alcohol) (PVA) (i.e. PA610xPVA05y, PA610xPVA08y and PA610xPVA14y) blend films reduced to minimum values when their PVA contents reached corresponding optimal values. Oxygen transmission rate, Vf and Fv values obtained for optimal PA610xPVAzy blown films were reduced considerably with decreasing PVA degrees of polymerization. The oxygen transmission rate of the optimal bio‐based PA61080PVA0520 blown film was only 2.4 cm3 (m2·day·atm)?1, which is about the same as that of the most often used high‐barrier polymer, ethylene–vinyl alcohol copolymer. Experimental findings from dynamic mechanical analysis, differential scanning calorimetry, wide‐angle X‐ray diffraction and Fourier transform infrared spectroscopy of the PA610xPVAzy blends indicate that PA610 and PVA in the blends are miscible to some extent at the molecular level when the PVA contents are less than or equal to the corresponding optimal values. The considerably enhanced oxygen barrier properties of the PA610xPVAzy blend films with optimized compositions are attributed to the significantly reduced local free‐volume characteristics. © 2017 Society of Chemical Industry  相似文献   

13.
Hydrogel is prepared from a poly(vinyl pyrrolidone) (PVP) and poly(vinyl alcohol) (PVA) blend solution by gamma radiation with a 60Co λ source at room temperature. Properties of the prepared hydrogel, such as gel fraction, gel strength swelling ratio, equilibrium water content, and water absorption in room temperature, were investigated. Blending hydrogel with PVP and PVA obviously increased the gel strength and decreased the swelling ratio of hydrogel. It was observed that the gel fraction increased while the swelling ratio and water content decreased with increased radiation dose, but gel strength increased up to a certain radiation dose and then decreased. The percentage of water absorption at room temperature increased with time but after a certain time it became steady and decreased with radiation dose.  相似文献   

14.
Biodegradable polymer blends of high-molecular-weight poly(3-hydroxybutyrate) (PHB) and poly(lactic acid) (PLA) are not miscible in general. Yet, by decreasing the molecular weight of PHB, the low-molecular-weight PHB could have improved miscibility with the PLA. In this study, a melt-induced degradation process of PLA/PHB blends was therefore implemented, termed the in-situ self-compatibilization approach, to produce low-molecular-weight PHB during melt blending process. The solution blends of PLA and oligomer PHB (PLA/OPHB) were also prepared as a basis to understand the role of low-molecular-weight PHB to improve its miscibility with PLA in PLA/PHB blends. Only one single glass transition temperature (Tg) was found for the resulting PLA/PHB blends at compositions of 95/05 to 80/20, proving that the miscibility was greatly improved by decreasing molecular weight of PHB. Because the degraded PHB had a relatively lower Tg, it thus provided plasticization effect to the PLA and resulted in the decreased crystallization temperature. Moreover, with increasing PHB content to 20% in the blend, the elongation at break increased significantly from 7.2% to 227%, more than 30-fold. The extensive shear yielding and necking behavior were observed during tensile testing for the blend of 80/20. The localized plasticization within PLA/PHB matrix with the reduction of local yield stress and the well-dispersed PHB crystallites were the major contributing factors to trigger shear yielding phenomenon. Moreover, initial modulus decreased only 20%, from 1.68 to 1.35 GPa. A common problem of severely reduced stiffness from the added plasticizer encountered in the plasticized PLA blends was therefore not perceived here.  相似文献   

15.
Poly (vinyl alcohol)/polylactic acid (PVA/PLA) blend film, which is environment friendly and has potential applications in food and electronic packaging fields, was fabricated by melt extrusion casting. Fourier transform infrared spectroscopy analysis confirmed the formation of the hydrogen bonding between PLA and PVA, which improved the compatibility of PLA with PVA, making PLA uniformly dispersed in PVA matrix as small spheres, even when PLA content increase to 15 wt%. In this way, the original hydrogen bond network among PVA was disturbed and the chain mobility of PVA was activated, endowing PVA/PLA blends with lower melt viscosity than bot modified PVA and PLA, and the blend films with the increased crystallinity, mechanical property, and water resistance. Compared with PVA film, the crystallinity, tensile strength and Young's modulus of the blend film with 15 wt% PLA, respectively, increased by 15.1%, 9 and 51 MPa, and the water contact angle enlarged from 23° to 60°.  相似文献   

16.
Systematically investigations of the plasticizing effects of triacetine (TAc) on crystallization, chain mobility, microstructure, and tensile properties of the Poly (lactic acid)/triacetine (PLA/TAc) blends are reported. A new transition hump was observed on the tan δ curve of PLAxTAcy specimens at temperatures ranging from ?80 to ?20°C. Thermal, wide angle X‐ray diffraction (WAXD) and dynamic mechanical analysis properties of PLA and PLAxTAcy series specimens suggest that PLA and PLAxTAcy series specimens can hardly crystallize by cooling the melt in room temperature. However, significant recrystallization of α form PLA crystals was found during the annealing processes of PLAxTAcy series specimens. Some “less perfect” β form PLA crystals were found as the TAc contents of PLAxTAcy specimens reach 30 wt %. Further morphological analysis show that the inherent brittle deformation behavior of the PLA specimen was successfully transformed into relatively ductile fracture behavior after blending sufficient but optimum amounts of TAc in PLA resins. Possible reasons accounting for this interesting recrystallization, thermal, microstructure and tensile properties of PLAxTAcy specimens are proposed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
A batch processing method is used to fabricate foams comprising of a blend of poly(lactic acid) (PLA) and Novatein, a protein‐based thermoplastic. Various compositions of Novatein/PLA are prepared with and without a compatibilizer, PLA grafted with itaconic anhydride (PLA‐g‐IA). Pure Novatein cannot form a cellular structure at a foaming temperature of 80 °C, however, in a blend with 50 wt % of PLA, microcells form with smaller cell sizes (3.36 µm) and higher cell density (8.44 × 1021 cells cm?3) compared to pure PLA and blends with higher amounts of PLA. The incorporation of 50 wt % of semicrystalline Novatein stiffens the amorphous PLA phase, which restrains cell coalescence and cell collapse in the blends. At a foaming temperature of 140 °C, NTP30–PLA70 shows a unique interconnected porous morphology which can be attributed to the CO2‐induced plasticization effect. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45561.  相似文献   

18.
Oxygen transmission rates and free volume properties (i.e. average volumes of free-volume-cavities (Vf), mean number of the free volume cavities per unit volume (I3) and fractional free volume (Fv)) values of bio-based polyamide 612 (PA612)/poly(vinyl alcohol) (PVA) (i.e. PA612xPVA03y, PA612xPVA05y, PA612xPVA08y and PA612xPVA14y) blend films were reduced to a minimum value, when their PVA content reached corresponding optimal values of 25, 20, 15 and 10 wt%, respectively. The minimum oxygen transmission rate, Vf, I3 and Fv value obtained for the best PA61290PVA1410, PA61285PVA0815, PA61280PVA0520 and PA61275PVA0325 bio-based blown films reduced considerably with decreasing PVA degrees of polymerization. As evidenced by the results of dynamical mechanical analysis, differential scanning calorimetry, wide angle X-ray diffraction and Fourier transform infrared spectroscopic experiments, PA612 and PVA are miscible to some extent at the molecular level when their PVA contents are ≤ the corresponding optimal values. The significantly improved oxygen barrier and free volume properties for the PA612xPVAzy blend films with optimized compositions is at least in part to the enhanced intermolecular interactions between PA612 carbonyl groups and PVA hydroxyl groups.  相似文献   

19.
Thermal properties and non‐isothermal melt‐crystallization behavior of poly(trimethylene terephthalate) (PTT)/poly(lactic acid) (PLA) blends were investigated using differential scanning calorimetry and thermogravimetric analysis. The blends exhibit single and composition‐dependent glass transition temperature, cold crystallization temperature (Tcc) and melt crystallization peak temperature (Tmc) over the entire composition range, implying miscibility between the PLA and PTT components. The Tcc values of PTT/PLA blends increase, while the Tmc values decrease with increasing PLA content, suggesting that the cold crystallization and melt crystallization of PTT are retarded by the addition of PLA. The modified Avrami model is satisfactory in describing the non‐isothermal melt crystallization of the blends, whereas the Ozawa method is not applicable to the blends. The estimated Avrami exponent of the PTT/PLA blends ranges from 3.25 to 4.11, implying that the non‐isothermal crystallization follows a spherulitic‐like crystal growth combined with a complicated growth form. The PTT/PLA blends generally exhibit inferior crystallization rate and superior activation energy compared to pure PTT at the same cooling rate. The greater the PLA content in the PTT/PLA blends, the lower the crystallization rate and the higher the activation energy. Moreover, the introduction of PTT into PLA leads to an increase in the thermal stability behavior of the resulting PTT/PLA blends. Copyright © 2011 Society of Chemical Industry  相似文献   

20.
A low molecular weight bisphenol‐A type epoxy resin was used as a reactive compatibilizer for poly(lactic acid) (PLA)/polyamide 610 (PA 610) biomass blends. To the best of our knowledge, this blend is the first biomass PA 610 blend in the literature. The epoxy functional groups could react with the terminal groups of both PLA and PA 610. An ester–amide interchange reaction led to a polyester–polyamide copolymer formation, and improved the compatibility of PLA and PA 610. The blends with epoxy resin showed an enhancement in the phase dispersion and interfacial adhesion compared with the blend without epoxy resin. The differential scanning calorimetry (DSC) analysis showed that the crystallization peak temperatures decreased with increasing epoxy content. The melting temperature of PA 610 decreased with the addition of PLA, but remained unchanged with increased compatibilizer dosages. The dynamic mechanical analysis (DMA) showed that the glass transition temperature (Tg) of the blend, with the addition of 0.5 phr epoxy resin, slightly increased compared with that of neat PLA. However, the Tg of the blends remained unchanged with increasing epoxy resin content, and the higher content of epoxy resin in the blends resulted in improved mechanical properties and higher melt viscosity. The unnotched impact test showed that PA 610 could toughen PLA with the addition of epoxy resin. Moreover, the no‐break unnotched impact behavior was observed with the medium content of the compatibilizer, improving the notch sensitivity of PLA. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2563–2571, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号