首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the effect of Fe powder on the physical and mechanical properties of high density polyethylene (HDPE) was investigated experimentally. HDPE and HDPE containing 5, 10, and 15 vol % Fe metal–polymer composites were prepared with a twin screw extruder and injection molding. After this, fracture surface, the modulus of elasticity, yield and tensile strength, % elongation, Izod impact strength (notched), hardness (Shore D), Vicat softening point, heat deflection temperature (HDT), melt flow index (MFI), and melting temperature (Tm) were determined, for each sample. When the physical and mechanical properties of the composites were compared with the results of unfilled HDPE, it was found that the yield and tensile strength, % elongation, and Izod impact strength of HDPE decreased with the vol % of Fe. As compared with the tensile strength and % elongation of unfilled HDPE, tensile strength and % elongation of 15 vol % Fe filled HDPE were lower, about 17.40% and 94.75% respectively. On the other hand, addition of Fe into HDPE increased the modulus of elasticity, hardness, Vicat softening, MFI, and HDT values, such that 15 vol % Fe increased the modulus of elasticity to about 48%. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

2.
In this study, 5, 10, and 15 vol.% of bronze (Cu-10 wt.% Sn) powder on the physical and mechanical properties of Acrylonitrile-Butadiene-Styrene (ABS) were investigated experimentally. After preparing metal-polymer matrix composites (PMC) with a twin screw extruder and injection molding, fracture surface, the modulus of elasticity, yield and tensile strength, percentage elongation, Izod impact strength, hardness (Shore D), melt flow index (MFI), heat deflection temperature (HDT), Vicat softening point, and glass transition temperature (T g) of each sample were determined. As compared to the unfilled ABS. It was found that by increasing the vol.% of bronze in ABS, yield and tensile strength, % elongation, Izod impact strength, MFI values decreased, while the modulus of elasticity, Shore D hardness, Vicat softening point, and HDT values increased.  相似文献   

3.
ABSTRACT

The physical and mechanical properties of Polypropylene (PP) and Fe-PP polymer composites containing 5, 10, and 15 vol% Fe were investigated experimentally. After preparing PP and Fe–PP polymer composites with a twin screw extruder and injection molding, the following properties were determined: yield and tensile strength, the modulus of elasticity, % elongation, hardness (Shore D), Izod impact strength (notched), melt flow index (MFI), Vicat softening point, Heat deflection temperature (HDT), and melting temperature (Tm) of PP and metal-polymer composites. As compared to PP, It was found that by increasing the vol% of Fe in PP, notched Izod impact strength, yield and tensile strength, and % elongation decreased. On the other hand, the modulus of elasticity, hardness, MFI, vicat softening point, and HDT values increased with the amount of iron.  相似文献   

4.
In this article, supercritical carbon dioxide (scCO2) is used to form a high density microcellular foam structure to reduce the polymer use and facilitate dispersion of Mg(OH)2 and Nanoclay fillers. A twin-screw extruder system was used to predistribute the inorganic filler from the PP polymer, resulting composite PP/filler pellets. This followed by the use of a single-screw extruder wherein supercritical carbon dioxide is introduced in the formulation. Finally the resulting foam PP/filler/CO2 pellets are injection molded into test samples. The structure and properties of the composites are characterized using a scanning electron microscopy (SEM), Differential scanning calorimetry (DSC), and density measurements. Furthermore, PP/Clay/Mg(OH)2 polymer composites are subjected to examinations to obtain their yield and tensile strengths, elasticity modulus, % elongation, Izod impact strength, hardness, Heat deflection temperature (HDT), Vicat softening point and Melt flow index (MFI).  相似文献   

5.
To determine the possibility of using leather waste as reinforcing filler in the thermoplastic polymer composite, acrylonitrile–butadiene–styrene (ABS) as the matrix and leather buffing powder as reinforcing filler were used to prepare a particulate reinforced composite to determine testing data for the physical, mechanical, and thermal properties of the composites, according to the filler loading in respect to thermoplastic polymer. The ABS and leather powder composites were prepared by the extrusion of ABS with 2.5, 5, 7.5, 10, 12.5, and 15 wt % of leather powder in corotating twin screw extruder. The extruded strands were cut into pellets and injection molded to make specimens. These specimens were tested for physicomechanical properties like tensile and flexural strengths, tensile and flexural modulus, Izod and charpy impact strength, abrasion resistance, Rockwell hardness, density, Heat deflection temperature (HDT) and Vicat softening point (VSP), water absorption, and thermal degradation analysis. The incorporation of leather waste powder does not affect the tensile, flexural strengths, Izod impact strength, abrasion resistance, Rockwell hardness, density, HDT and VSP values drastically. However, the tensile modulus, tensile elongation, and charpy impact strength values are reduced significantly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3062–3066, 2006  相似文献   

6.
Mechanical properties of metal-polymer matrix composites were investigated experimentally. High density polyethylene (HDPE), polypropylene (PP), and polystyrene (PS) were used as the polymer matrix and Fe powder in 5, 10, and 15 vol% was used as the metal. The modulus of elasticity, yield and tensile strength, % elongation, Izod notched impact strength, Shore D hardness, and fracture surfaces of the composites were determined. It was found that vol% Fe reduced the Izod impact strength of HDPE much more than that of PP and PS, while Fe powder increased the hardness of HDPE more than that of PP and PS. Among the composites, PS-Fe composites had higher yield, tensile strength and modulus of elasticity than HDPE-Fe and PP-Fe composites. However, % elongation of PS-Fe composites was lower than that of the other composites. In addition, HDPE- and PP-based composites exhibited ductile type fracture, while PS-Fe composites exhibited brittle type fracture.  相似文献   

7.
Interfacial agents as compatibilizers have recently been introduced into polymer blends to improve the microstructure and mechanical properties of thermoplastics. In this way, it is possible to prepare a mixture of polymeric materials that can have superior mechanical properties over a wide temperature range. In this study, an incompatible blend of polypropylene (PP) and polyamide‐6 (PA6) were made compatible by the addition of 10% styrene–ethylene–butadiene–styrene copolymer (SEBS). The mixing operation was conducted by using a twin‐screw extruder. The morphology and the compatibility of the mixtures were examined by SEM and DSC techniques. Furthermore, the elastic modulus, tensile and yield strengths, percentage elongation, hardness, melt flow index, Izod impact resistance, heat deflection temperature (HDT), and Vicat softening point values of polymer alloys of various ratios were determined. It was found that the addition of SEBS to the structures decreased the tensile strength, yield strength, elastic modulus, and hardness, whereas it increased the Izod impact strength and percentage elongation values. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3485–3491, 2003  相似文献   

8.
Interfacial agents as compatibilizers have recently been introduced into polymer blends to improve microstructure and mechanical properties of thermoplastics. In this way, it is possible to prepare a mixture of polymeric materials that can have superior mechanical properties over a wide temperature range. In this study, an incompatible blend of Polycarbonate (PC) and Acrylonitrile Butadiene Styrene (ABS) Copolymer were made compatible by addition of 5, 10, and 20% Styrene–Isopren–Styrene Copolymer (SIS). The mixing operation was conducted using a twin‐screw extruder. The morphology and the compatibility of the mixtures were examined by SEM and DSC techniques. Furthermore, the elastic modulus, tensile and yield strengths, percentage elongation, hardness, melt flow index, Izod impact resistance, heat deflection temperature (HDT), Vicat softening point values of polymer alloys of various ratios were determined. It was found that addition of SIS to the structures decreased the tensile strength, yield strength, elastic modulus, and hardness, whereas it increased Izod impact strength and percentage elongation values. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 559–566, 2006  相似文献   

9.
《国际聚合物材料杂志》2012,61(12):1065-1073
Dynamically vulcanized thermoplastic elastomer (TPE) blends were first described by Fisher. In the 1960s, the usage of TPE was low. However, the consumption of TPE is increasing today. Due to hard and soft polymer phases in its structure, TPE replaced a lot of materials. TPE materials are preferred today due to their good thermal properties, oxidation resistance, transparency, adhesion, compatibility with other polymers etc. As a result of the studies that were done in 1975, TPV—vulcanized thermoplastic elastomers were developed. In this study, TPV elastomers were produced by forming crosslinks with peroxide from different ratios, of EPDM and PP. Mixing was done with twin screw extruder. After that yield and tensile strength, the modulus of elasticity, % elongation, Izod impact strength, hardness, Melt Flow Index (MFI), Vicat Softening Point, Heat Deflection Temperature (HDT), and density of crosslinks were determined. Thermal transition temperatures and microstructure were determined with DSC and SEM, respectively.  相似文献   

10.
采用双螺杆挤出机制备了一系列不同配方的聚丙烯/马来酸酐接枝聚乙烯/蛋壳粉复合材料,研究了蛋壳粉用量对复合材料拉伸强度、冲击强度、断裂伸长率、硬度、维卡软化温度、熔体流动速率(MFR)的影响.结果表明,随着蛋壳粉用量的增加,复合材料的拉伸强度先增加后降低,冲击强度、断裂伸长率逐渐减小,硬度逐渐增加;随着蛋壳粉用量的增加,...  相似文献   

11.
Polymer-based composite structures have advantages over many other materials. The most important advantage is the higher mechanical properties obtained from the composites when supported by fiber reinforcement. The mechanical and thermal properties of fiber-reinforced composite structures are affected by the amount of fibers in the structures, orientation of the fibers and fiber length. Silk and cotton fibers are used in many fields but especially in clothing and textiles. However, there is not enough research on their usage as reinforcement fibers in composite structures. Silk fibers as a textile material have better physical and mechanical properties than other animal fibers. The improvement of the mechanical and physical properties of the composite structures allows them to be used in many areas. From economical, technological and environmental points of view, the improvement of mechanical and physical properties of polymeric materials are receiving much attention in recent studies.

In this study, different application areas were chosen to evaluate the waste silk and waste cotton rather than classic textile applications. Waste silk and cotton and recycled polycarbonate polymer were mixed and as a result composite structures were obtained. Silk and cotton waste fiber dimensions were in between 1 mm, 2.5 mm and 5 mm. The recycled PC/silk and cotton wastes were mixed in the rates of 97%/3%. Mixtures were prepared by twin-screw extruder. Tensile strength, % elongation, yield strength, elasticity modulus, Izod impact strength, melt flow index (MFI), heat deflection temperature (HDT) and Vicat softening temperature properties were determined. To determine the materials' thermal transition and microstructure properties, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used.  相似文献   

12.
In this study, composite structures were produced using HDPE polymer with silk and cotton waste as reinforcement fibers in different ratios. Cotton and silk wastes were mixed in the ratios of HDPE/silk or cotton waste 100%/0%, 97%/3%, and 94%/6%. This mixture was prepared with double-screwed extruder. The tests were carried out in terms of tensile strength, % elongation, yield strength, elasticity module, izod impact strength, melt flow index (MFI), heat deflection temperature (HDT), and vicat softening temperature. Materials' thermal transitions were determined with differential scanning calorimetric (DSC) and microstructure properties with scanning electron microscope (SEM).  相似文献   

13.
A polycarbonate (PC)/ poly (styrene‐co‐acrylonitrile) (SAN) alloy modified with styrene‐ethylene‐butylene‐styrene (SEBS) block copolymer was prepared and the influence of SEBS content, PC content, and types of modifier on Izod notched impact strength, tensile strength, flexural strength, and Vicat softening temperature was studied. The results showed that the addition of SEBS could obviously increase the Izod notched impact strength and the elongation at break and decrease the tensile and flexural strength and Vicat softening temperature. PC/SAN alloy modified with SEBS had better mechanical properties than the PC/SAN alloy modified with ABS. DSC analysis and SEM photographs revealed that the SEBS was not only distributed in the SAN phase but also distributed in PC phase in a PC/SAN/SEBS alloy while the ABS was mainly distributed in SAN phase in a PC/SAN/ABS alloy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

14.
The effects of quenching temperature including different thermal histories on mechanical, physical, and thermal properties of pigmented polycarbonate (PC/TiO2) were investigated. Tensile test, Izod impact strength and heat distortion temperature (HDT) were performed on specimens of 3 mm thickness. Pigment content and quenching temperature are two key factors that affect the properties of the materials. A higher content of pigments results in an increase of modulus of elasticity and a decrease of unotched and notched Izod impact strength, as well as elongation at break. A maximum of yield stress and HDT is obtained at 3% of TiO2, which was considered as the optimum level of pigment. An additional second quenching at 40°C has allowed to improve Izod impact strength and elongation at break of specimens with 3% of TiO2; whereas modulus of elasticity, density, yield stress, and HDT were minimum at this quenching temperature. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

15.
To determine the possibility of using starch as biodegradable filler in the thermoplastic polymer matrix, starch‐filled polypropylene (PP) composites were prepared by extrusion of PP resin with 5, 10, 15, and 20 wt % of potato starch in corotating twin‐screw extruder. The extruded strands were cut into pellets and injection molded to make test specimens. These specimens were tested for physicomechanical properties such as tensile and flexural properties, Izod impact strength, density, and water absorption. These PP composites were further characterized by melt flow index (MFI), vicat softening point (VSP), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) techniques. It was found that, with increase in starch content, tensile modulus, flexural strength, and flexural modulus of the PP composites increased along with the increase in moisture, water absorption, and density, while retaining the VSP; but, tensile strength and elongation, impact strength, hardness, and MFI of the PP composites also decreased. DSC analysis of the PP composite revealed the reduction in melting temperature, heat of fusion, and percentage of crystallization of PP with increase in starch content. Similarly, TGA traces display enhanced thermal degradability for PP as starch content increases. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
In this study, vulcanized thermoplastic elastomers were produced through the formation of crosslinks with peroxide for different ratios of ethylene–propylene–diene copolymer to polypropylene. Mixing was performed with a twin‐screw extruder. Afterward, the yield, tensile strength, elastic modulus, elongation, Izod impact strength, hardness, melt flow index, Vicat softening point, heat deflection temperature, and density of the crosslinks were determined. The thermal transition temperatures and microstructure were determined with differential scanning calorimetry and scanning electron microscopy, respectively. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3895–3902, 2007  相似文献   

17.
Polymer-based composite structures have advantages over other materials. The most important advantage is the higher mechanical properties obtained from the composites when supported by fiber reinforcement. The mechanical and thermal properties of fiber-reinforced composite structures are affected by the amount of fibers in the structures, orientation of the fiber and fiber length. Silk and cotton fibers are used in many fields but especially in clothing and textiles. However, there is not enough research on their usage as reinforcement fibers in composite structures. Silk fibers as a textile material have better physical and mechanic properties than other animal fibers. It is very important that the improvement of the mechanical and physical properties of the composite structures allows them to be used in many areas. From economical, technological and environmental points of view, the improved the mechanical and physical properties of polymeric materials are receiving much attention in the recent studies.

In this study, various lengths (1 mm–2.5 mm and 5 mm) of waste silk and waste cotton fibers were added to high-density polyethylene (HDPE) and polypropylene (PP) polymer in the mixing ratios of (polymer:fiber) 100%:0%, 97%:3%, and 94%:6% to produce composite structures. On the other hand, known lengths (1–2.5–5 mm) of waste silk and waste cotton fibers were added to recycled polyamide-6 (PA6) and polycarbonate (PC) polymers in mixing quantities of 100%-0%, 97%-3%. A twin-screw extruder was employed for the production of composites. Tensile strength, % elongation, yield strength, elasticity modulus, Izod impact strength, melt flow index (MFI), heat deflection temperature (HDT), and Vicat softening temperature properties were determined. In order to determine the materials' thermal transition and microstructure properties, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used. Results have shown that cotton and silk fibers behave differently than in the composite structure. Waste silk fiber composites give better mechanical properties than waste cotton fiber.  相似文献   

18.
In the present study, the effect of talc content on the mechanical, thermal, and microstructural properties of the isotactic polypropylene (i‐PP) and elastomeric ethylene/propylene/diene terpolymer (EPDM) blends were investigated. In the experimental study, five different talc concentrations, 3, 6, 9, 12, and 15 wt %, were added to i‐PP/EPDM (88/12) blends to produce ternary composites. The mechanical properties such as yield and tensile strengths, elongation at break, elasticity modulus, izod impact strength for notch tip radius of 1 mm, and hardness with and without heat treatments and thermal properties, such as melt flow index (MFI), of the ternary composites have been investigated. The annealing heat treatment was carried out at 100°C for holding time of 75 h. From the tensile test results, an increased trend for the yield and tensile strengths and elasticity modulus was seen for lower talc contents, while elongation at break showed a sharp decrease with the addition of talc. In the case of MFI, talc addition decreased the MFI of i‐PP/EPDM blends. It was concluded that, taking into consideration, mechanical properties and annealing heat treatment, heat treatment has much more effect on higher yield and tensile strengths, elongation at break, elasticity modulus, impact strength, and hardness. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3033–3039, 2006  相似文献   

19.
以聚苯乙烯树脂GPPS为连续相,以丁苯透明抗冲树脂为分散相,对其共混合金体系进行了研究,找出共混体系的力学性能、光学性能、熔体流动性能和热性能的变化规律。按一定比例共混后的塑料合金与基体树脂GPPS比较,悬臂梁冲击强度提高,拉伸屈服强度下降,断裂伸长率增加,雾度在一定范围内有所上升,熔体流动速率MFR介于两纯组分之间,维卡软化点温度介于两纯组分之间。  相似文献   

20.
The importance of alloys and blends has increased gradually in the polymer industry so that the plastics industry has moved toward complex systems. The main reasons for making polymer blends are the strengthening and the economic aspects of the resultant product. In this study, I attempted to improve compatibility in a polymer blend composed of two normally incompatible constituents, namely, acrylonitrile–butadiene–styrene (ABS) and polycarbonate (PC), through the addition of a compatibilizer. The compatibilizing agent, styrene–butadiene–styrene block copolymer (SBS), was added to the polymer blend in ratios of 1, 5, and 10% with a twin‐screw extruder. The morphology and the compatibility of the mixtures were examined by scanning electron microscopy and differential scanning calorimetry. Further, all three blends of ABS/PC/SBS were subjected to examination to obtain their yield and tensile strengths, elasticity modulus, percentage elongation, Izod impact strength, hardness, heat deflection temperature, Vicat softening point, and melt flow index. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2521–2527, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号