首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

This paper presents the stress–strain response and general lifetime damage modelling of glass fibre reinforced epoxy (GRE) composite pipes subjected to multi-ratios stress loadings at room temperature (RT). This particular modelling work was developed to predict the non-linear stress–strain response caused by the fatigue static and cyclic loading in the multiaxial ultimate elastic wall stress (UEWS) tests by considering the effects of matrix cracking within the laminates. Although the UEWS procedure is not a standard protocol used for qualification of GRE pipes, it appears to offer an option to existing procedures delineated in ASTM D2992. The ply properties initially expressed as a function of crack density was computed as a function of increasing stress and strain using shear lag approximation. In general lifetime damage model, the effects of stress developed in each ply from ultimate elastic wall stress (UEWS) test were expressed in a single quadratic term of axial and hoop stress. The term then solved to produce limits with respect to axial and hoop stress, which represented in a graphical form of failure envelope. The predictions from both models are found to be in good agreement with the data from the multiaxial UEWS tests of ±55° filament wound GRE pipes. These models thus enable for the long term performance prediction of the pipes under combined loadings.  相似文献   

2.
Abstract

This paper presents the results of an investigation of the biaxial stress–strain behaviour of filament wound glass fibre reinforced composite pipes exposed to high temperature water. Two matrix systems were investigated: cycloaliphatic amine cured epoxy resin; and siloxane modified phenolic alloy. Water absorption tests on pipe using the two systems at 95°C showed equilibrium moisture contents of 0.5 and 4.5%, respectively, saturation being achieved within seven days at this temperature in both cases. The axial moduli of the pipes were determined at temperatures up to 160°C, using a bending test. Reductions were observed in the T g of both systems in the water saturated condition. Biaxial loading tests were carried out on the two pipe systems at temperatures from 20 to 160°. The results are presented in the form of failure envelopes and stress–strain relationships under load. At the highest temperatures (above its T g ), significant weakening of the epoxy system was observed, especially in matrix dominated loading conditions. In contrast, the failure envelopes for the phenolic system showed remarkably little temperature influence.  相似文献   

3.
Recent work on the determination of residual stress in drawn pipes has revealed an error in previous methods used. Such pipes have residual stresses very different from those induced by melt extrusin during conventional pipe processing. In particular, it appears that there are considerable compressive stresses at the bore, and the hoop and axial values are not equal. In an attempt to measure these values, tests were performed on slit rings of varying length, and a pronounced dependence of ring overlap on length was observed. This was contrary to previous assumptions, and a corrected version of the analysis has been developed, which enables the true hoop and axial stresses to be determined by testing rings of various lengths. For isotropic pipes, it has been shown that hoop and axial stresses are roughly equal. Previous results obtained on thin pipe rings can now be corrected by multiplying by the factor 1/(1-v). For anisotropic drawn pipes, a combination of rings and thin axial strips is used to determine the residual stresses. These pipes can show remarkably low stresses at the bore, which may play a significant part in determining their performance.  相似文献   

4.
塑料管材连续双向拉伸技术   总被引:1,自引:0,他引:1  
介绍六种塑料管材连续双向拉伸技术,包括压缩空气成型、口模拉伸成型、风冷却成型、模头胀拉成型、高压水成型和真空/压空成型,并对其成型方法、加工装置及用各种成型方法所制备的管材性能作了简单介绍。用连续双向拉伸技术生产的塑料管材周向性能和轴向性能都有所提高,而且运用该技术还能够提高生产率、节约原材料、降低成本。  相似文献   

5.
With polymer pipes being used more commonly, performance requirements are increasing. Studies on the enhancement of mechanical properties of polymer pipes are particularly important. In this study, a self-designed annular expansion pipe extruder head was used to enhance the mechanical properties of HDPE pipes. Different morphologies of the HDPE pipes were produced under different processing conditions. When the extrusion angle was 30° (P30), the best mechanical properties were obtained. The hoop tensile strength and axial tensile strength were 14.5% and 41.0% higher, respectively, compared with the specimen without expansion (P0). This improvement of mechanical properties can be attributed to several reasons. First, the processing parameters of P30 reached the threshold shear rate and strain for shish-kebab formation, as shown by scanning electron microscopy. Second, P30 has the highest orientation parameter and crystallinity of 0.679 and 67.27%, respectively, from 2D wide-angle diffraction (WAXD). Polarized FTIR shows the same trend as 2D-WAXD. Third, the outer bamboo-like self-reinforced structure is formed inside the pipe at 30° expansion angle while the core layer has a well-formed crystal structure; the special structure improves the overall performance of HDPE pipe. This method can be utilized in large-scale industrial production.  相似文献   

6.
通过纤维增强复合材料(FRP)管-钢管约束混凝土组合柱的轴压试验,分析组合柱的受力特点、破坏形态、本构关系和承载力。结果表明:在荷载作用初期,FRP管的约束作用较小;在荷载作用后期,FRP管的环向应力增长较快,故以FRP管的环向断裂作为承载力极限状态指标。将现有理论计算模型与试验所得受约束混凝土的应力-应变关系进行对比,发现空心构件极限应变的理论计算误差较大,而实心构件吻合较好。最后提出了一种可用于确定实心组合柱极限承载力的简化计算方法,理论计算结果与试验值符合较好。  相似文献   

7.
采用电磁动态塑化挤出机挤出聚丙烯(PP)管材,通过爆破压力测试、拉伸性能测试、差示扫描量热(DSC)分析和X射线衍射(XRD)分析研究了振动频率和振幅对PP管材结构与力学性能的影响。力学性能测试结果表明,振动挤出PP管材的周向强度有了显著提高,实现了管材的双向自增强。与稳态挤出的PP管材相比,振动挤出PP管材的爆破压力最大提高了27.03%,轴向拉伸屈服强度最大提高了7.3%。DSC分析和XRD分析表明,振动挤出的PP管材结晶度提高,熔点升高,结晶完善,晶粒变小,有利于管材力学性能的提高。  相似文献   

8.
针对深海油气输送所使用的钢制管道存在耐腐蚀性差、质量大以及柔性小的不足,设计了具有耐腐蚀性强、质量轻、强度高、柔性好等优点的热塑性玻璃纤维(玻纤)增强聚乙烯柔性管,基于海深500 m油井油气输送用玻纤增强柔性管道中的抗压和抗拉增强层截面结构设计要求,通过有限元方法进行了多角度玻纤缠绕设计。结合DNVGL–RP–F119规范和美国船级社相关规范,首先根据柔性管受载工况进行了抗压层和抗拉层缠绕角度的设计,然后通过对抗压层、抗拉层在30 MPa内压、5 MPa外压和588 000 N拉力3种典型工况下的厚度试算以及90 MPa爆破压力校核,最终获得能够满足柔性管技术设计指标要求的增强层厚度为11.6 mm(90°玻纤缠绕抗压层8 mm,+30°玻纤缠绕抗拉层1.8 mm,–30°玻纤缠绕抗拉层1.8 mm)。与传统柔性管使用的单一缠绕角度设计方法相比,所设计的玻纤增强柔性管不需要经过多个工况强度校核进行大量缠绕角度和缠绕厚度试算以确定多种工况下的增强层最优缠绕角度和最少缠绕层数,因此计算量小、设计效率高。  相似文献   

9.
A solar drier with and without air recycling (Methods I and II) along with a sun drying system (Method III) were used to reduce the moisture content of pistachio from 40 to ~5% (wet basis) at similar weight conditions. Although the ΔT’s of ambient air in Methods I and II reached, respectively, to 18 and 14°C, it did not increase more than 2°C in Method III. The drying air of Method I obtained ~55% more enthalpy from its solar collectors and transferred ~35% more heating energy to the product than the one in Method II. Consequently it’s thermal and pickup efficiencies became, respectively, 40 and 80% more than Method II. Although the highest exergy efficiencies of Methods I and II were equal to each other (~95%), the maximum exergy loss of Method I was higher than Method II due to its higher air temperature and pressure loss (because of continuous air circulation). Although its energy utilization ratio and drying rate were, respectively, 30% more than Method II and 20% higher than Method III, its drying time was 20 and 30% less than the ones in Methods II and III. Overall, the pistachio dried with Method I used much less energy than those dried with other methods and had a higher quality than those dried with commercial driers due to drying temperature <50°C.  相似文献   

10.
利用复合材料层合板理论对碳纤维增强聚氨酯(PU)密封胶在海水压力下的受力状况进行了简要的数学分析,并结合耐压试验结果,对碳纤维增强PU密封胶的老化及渗漏性能进行了分析。结果表明:应用层合板理论计算得到的复合材料环体的轴向压缩强度、环向拉伸强度、径向压缩强度及受力情况均满足设计要求;但是,上述计算均以碳纤维增强PU胶粘剂材料的静态力学性能为依据的,而复合材料环体在工作时呈动态力学状态,故应用层合板理论进行相关性能的计算还存在着一定的误差;目前采用碳纤维增强PU缠绕工艺、辅以表面处理剂和净水隔离剂后所制备的电缆密封胶,在7MPa压力作用下,环型管节没有泄漏,与计算结果预测一致。  相似文献   

11.
Three-layer pipe has many advantages over single layer one, especially for the pipe of glass fiber (GF) reinforced materials. But the hoop strength of the pipe produced via convention extrusion is poor because GFs orient along axial direction. In this work, a self-designed rotation extrusion system was adopted to extrude GF reinforced three-layer polypropylene random copolymer (PPR) pipe, in which a hoop shear field was applied to the polymer matrix and fibers in the middle layer. The structure and performance of pipes were investigated via scanning electronic microscope (SEM) and synchrotron two-dimensional wide-angel X-ray diffraction (2D-WAXD). Due to the hoop shear field, the orientation of GFs in middle layer deviated from axial direction. As a result, PPR pipes with enhanced hoop tensile strength were obtained. Because of the three-layer structure and the production process, the molecular chains of middle layer did not emerge distinct orientation after rotation shear, as shown in 2D-WAXD and SEM experimental results. This three-layer pipe rotation extrusion system offers a novel method for the modification of pipes in manufacture industry. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46985.  相似文献   

12.
Heat treated poly(p-phenylene benzobisthiazole) (PBZT) fibers tested in tension result in two types of failure modes. In failure mode I, the fiber exhibits a relatively sharp break; mode II is characterized by significant axial fiber splitting. Approximately 20% of the fibers failed in mode II when tested at 2.54, 7.62, and 12.7 cm gage lengths. At 1.25 cm gage length all the fibers failed in mode I. Tensile strength decreased from the 1.25 to 7.62 cm gage length, but tensile strength of the fibers tested at 7.62 and 12.7 cm gage lengths were similar. The two failure mode observation is supported by the Weibull statistical distribution. Fiber tensile properties were also measured at 150°C. Axial compressive strength of the PBZT fibers as determined from the recoil test is also reported and is found to be independent of fiber tensile modulus and fiber diameter. As-received heat-treated fibers were post heat treated between 700 and 775°C. Structural changes in the fiber were studied using infrared spectroscopy, small and wide angle x-ray scattering, and swelling studies. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
A study of filament‐wound glass fiber/epoxy composite tubes under biaxial fatigue loading is presented. The focus is placed on fatigue lives of tubular specimens under tension/torsion biaxial loading at low cycle up to 100,000 cycles. Filament‐wound glass‐fiber/epoxy tubular specimens with three different lay‐up configurations, namely [±35°]n, [±55°]n, and [±70°]n lay‐ups, are subjected to in‐phase proportional biaxial cyclic loading conditions. The effects of winding angle and biaxiality ratio on the multiaxial fatigue performance of composites are discussed. Specimens are also tested under two cyclic stress ratio: R = 0 and R = −1. The experimental results reveal that both tensile and compressive loading have an influence on the multiaxial fatigue strength, especially for [±35°]n specimens. A damage model proposed in the literature is applied to predict multiaxial fatigue life of filament‐wound composites and the predictions are compared with the experimental results. It is shown that the model is unsuitable for describing the multiaxial fatigue life under different cyclic stress ratios. POLYM. COMPOS. 28:116–123, 2007. © 2007 Society of Plastics Engineers  相似文献   

14.
《Polymer Composites》2017,38(12):2631-2641
Experimental and computational studies of the composite laminates with thin center notches under axial compressive loading are carried out. A series of compressive testing of the composites with different crack lengths and angles between the loading vector and 0° fiber direction were conducted. The damage mechanisms as well as load–displacement curves are obtained from the test to analyze the effects of crack dimensions on stress distribution and ultimate load. It was shown that the compressive strength of composites drastically reduces when the crack angle goes from 0° to 90°. By studying the fracture surfaces of the tested specimens, all initial cracks within the laminates are found to extend without a straight crack path until fibers fracture simultaneously. Cases that involve crack propagation are modeled for different crack dimensions with a 3D progressive damage finite element analysis using the Abaqus. Numerical simulations qualitatively reproduce the general observations made in the laboratory experiments. POLYM. COMPOS., 38:2631–2641, 2017. © 2015 Society of Plastics Engineers  相似文献   

15.
The fracture behavior of ABS (acrylonitrile butadiene styrene) polymeric material has been investigated under the full range of in‐plane loading conditions using a new loading device to obtain more reliable results. Loading conditions from pure mode‐I through various mixed‐mode I/II ratios up to pure mode‐II have been generated using the proposed new loading device for the same specimen geometry. From the experimentally measured critical loads, the mode‐I, mode‐II, and the various mixed‐mode I/II critical energy release rates have been determined at different loading angles from 0° to 90°. Using the FE results, nondimensional stress intensity factors were applied to the specimen. The primary objectives of this study were to develop a new loading device to determine the mixed‐mode fracture toughness KIC and KIIC of ABS polymeric material. Another goal was to obtain stress intensity and strain energy release rates solutions associated with the crack, and to examine effects of thickness and geometric variables, particularly under mixed‐mode loading conditions. It was found that the thickness of the 10 mm specimen satisfied the plane strain condition with average fracture toughness ≈4.32 MPa·m1/2 under pure mode‐I loading and ≈1.42 MPa·m1/2 for pure mode‐II loading. POLYM. ENG. SCI., 54:2086–2096, 2014. © 2013 Society of Plastics Engineers  相似文献   

16.
采用缠绕法制备了芳纶长丝包覆碳纤维束,利用真空辅助树脂转移成型法制备了包覆碳纤维增强环氧树脂.通过电子万能试验机测试了复合材料的轴向压缩性能,研究了长丝缠绕方式、包覆密度和碳纤维束的数量对试样压缩强度及破坏模式的影响.结果表明,芳纶包覆能够提升碳纤维复合材料的压缩强度,随着芳纶长丝包覆密度的增加,压缩强度逐渐增加;相比...  相似文献   

17.
Pipes of isotactic polybutene-1 (PB) have been exposed to internal water and external air in pressure tests at 105°C. The pipes exposed to different internal pressures exhibited different failure mechanisms, referred to as stages I, II, and III. Samples taken from these pipes have been analyzed by infrared (IR) spectroscopy, wide-angle X-ray scattering (WAXS), size exclusion chromatography (SEC), and differential scanning calorimetry (DSC). IR spectroscopy and WAXS confirmed that thermal oxidation of the amorphous part of the polymer accompanied the onset of stage III. Thermal oxidation led to extensive molar mass reduction and to a significant increase in mass crystallinity and melting peak temperature. Extensive and visible degradation in pipes failing according to stage III was confined to so-called “oxidation spots.” The latter were first formed at the outer wall and propagated inwards, finally constituting approximately 50% of the wall thickness. The antioxidant concentration profiles obtained by DSC were always symmetrical and were successfully adapted to a previously developed model. It was shown that migration of the antioxidant was the dominant loss mechanism, that the diffusion coefficient was constant through the pipe wall, and that the evaporative loss to the external air was marginally greater than the loss to the internal water phase. Chemical consumption of the antioxidant was found to be negligible.  相似文献   

18.
The removal of Fe(III), Cu(II), and Cd(II) ions from aqueous solutions was investigated with a crossflow filtration technique. Alginic acid (AA)/cellulose composite membranes were used for retention. In the filtration of Fe(III) solutions, the effects of the crossflow velocity, applied pressure, AA content of the membranes, and pH on the retention percentage and the permeate flux were examined. The maximum retention percentage was found to be 89% for a 1 × 10?4M Fe(III) solution at the flow velocity of 100 mL/min and the pressure of 60 kPa with 0.50% (w/v) AA/cellulose composite membranes at pH 3. Aqueous solutions of Cu(II) and Cd(II) were filtered at the flow velocity of 100 mL/min and pressure of 10 kPa. The effects of the AA content of the membranes and pH of the waste medium on the retention percentage and the permeate flux were determined. For 1 × 10?4M Cu(II) and Cd(II) solutions, the maximum retention percentages were found to be 94 and 75%, respectively, at pH 7 with 0.50% (w/v) AA/cellulose composite membranes. When metal‐ion mixtures were used, the retention percentages of Fe(III), Cu(II), and Cd(II) were found to be 89, 48, and 10%, respectively, at pH 3 with 0.50% (w/v) AA/cellulose composite membranes. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
In this study, high hoop tensile strength and toughness polypropylene random copolymer (PPR) pipes were successfully prepared through rotation extrusion and synergistic effect of self‐assembling nucleating agent (TMB‐5) and crystallization promoter (isotactic polypropylene, iPP). The result indicated low temperature toughness of PPR pipes could be improved by incorporating TMB‐5 and iPP, as the result of highly improved PPR crystallization capability and abundant β‐form crystal production. Both molecular chains and anisotropic crystallites deviated off the axial direction due to the hoop stress generated by rotation extrusion, leading to increased hoop orientation and pronouncing enhancement in hoop strength. Accordingly, the hoop tensile strength and impact strength of the modified PPR pipe reached 28.9MPa and 5.7kJ/m2, increased by 126% and 43% compared to the convention‐extruded PPR pipe. POLYM. ENG. SCI., 56:866–873, 2016. © 2016 Society of Plastics Engineers  相似文献   

20.
Self-assembling β nucleating agents (TMB-5) and self-designed rotation extrusion device were applied to optimize and control over hoop strength of polypropylene (PP) pipes. By adjusting final heating temperature, TMB-5 efficiently self-assembled into fibrous morphology with controllable aspect ratio, and acted as an oriented template to direct the epitaxial crystallization of PP, into β-crystals with various lamellae-stacking patterns. The obtained structural information clearly demonstrated that enlarging the aspect ratio of TMB-5 could increase the ordering index and packing intensity of lamellae, moreover, impose them transforming from random arrangement to axial-orientation and then to orthogonal orientation. Among them, the anisotropic ones were further guided to align off the axial-direction of PP pipes via rotation extrusion, where the hoop drag flow caused by the mandrel rotation was superposed on the axial flow. As a result, the hoop tensile strength was enhanced monotonously from 21.3 MPa to 30 MPa for the rotation extruded PP pipes with increasing the aspect ratio of TMB-5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号