首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly (acrylonitrile‐butadiene‐styrene) (ABS) was used to modify diglycidyl ether of bisphenol‐A type of epoxy resin, and the modified epoxy resin was used as the matrix for making TiO2 reinforced nanocomposites and were cured with diaminodiphenyl sulfone for superior mechanical and thermal properties. The hybrid nanocomposites were characterized by using thermogravimetric analyzer (TGA), dynamic mechanical analyzer (DMA), universal testing machine (UTM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The bulk morphology was carefully analyzed by SEM and TEM and was supported by other techniques. DMA studies revealed that the DDS‐cured epoxy/ABS/TiO2 hybrid composites systems have two Tgs corresponding to epoxy and ABS rich phases and have better load bearing capacity with the addition of TiO2 particles. The addition of TiO2 induces a significant increase in tensile properties, impact strength, and fracture toughness with respect to neat blend matrix. Tensile toughness reveals a twofold increase with the addition of 0.7 wt % TiO2 filler in the blend matrix with respect to neat blend. SEM micrographs of fractured surfaces establish a synergetic effect of both ABS and TiO2 components in the epoxy matrix. The phenomenon such us cavitation, crack path deflection, crack pinning, ductile tearing of the thermoplastic, and local plastic deformation of the matrix with some minor agglomerates of TiO2 are observed. However, between these agglomerates, the particles are separated well and are distributed homogeneously within the polymer matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
The purpose of this study was to investigate the influence of adding different volume concentrations of titanium dioxide (TiO2) nanoparticles to an Araldite LY 564 epoxy resin. In order to characterize the nanoparticles toughening effects, compact tension specimens were used to determine the plane strain fracture toughness (KIC). Additionally, elastic modulus, tensile strength, and maximum sustained strain were measured in mechanical tensile tests. Composites were analyzed by means of electronic microscopy, both TEM and SEM, to check the dispersion quality of the nanoparticles in thepolymer matrix and to study the observed toughening mechanisms of the fillers. Addition of TiO2 nanoparticles could simultaneously improve the stiffness and the toughness of the epoxy resin. POLYM. COMPOS., 31:1241–1246, 2010. © 2009 Society of Plastics Engineers  相似文献   

3.
Mechanical properties of toughened epoxy resin with two nano particles sizes of TiO2 (17 nm and 50 nm) at different weight fractions (1%, 3%, 5% and 10%) were investigated and compared to that of submicron particles at 220 nm. The composites were characterized by tensile, flexural, pull-off and abrasion tests, followed by X-ray photoelectron spectroscopy and scanning electron microscopy of the fracture surfaces. The investigated epoxy depicted high performance epoxy systems formulated with low molecular weight epoxy resin and diethyltoluenediamine as a curing agent.  相似文献   

4.
Titanium oxide nanotubes (TiO2 nanotube, TNT) were prepared from hydrothermal treatment of TiO2 particles in NaOH at 140 °C, followed by neutralization with HCl. The structure of the nanotubes was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). TNT synthesized under the optimal conditions with approximately 10–20 nm wide, and several (100–200) of nanometers long. TNT is used as white pigment for two component epoxy-based coating. Ultrasonication followed by mechanical stirring has been applied for dispersion of TNT powder in an epoxy matrix. The resulting perfect dispersion of TNT particles in epoxy coating revealed by scanning electron microscopy (SEM) ensured white particles embedded in the epoxy matrix. The effects of TNT particle concentrations on thermal, mechanical and corrosion resistance of epoxy coatings composite were studied and compared to that of submicron particles. It was found that the TNT significantly enhances the heat resistance, the thermal stability and the glass transition temperature of epoxy resin. Epoxy/TNT nanocomposite with 5.0 wt.% TNT shows the highest thermal stability, the temperature of 50% weight loss increased from 365 to 378 °C, the amount of char yields or residues at 600 °C increased from 7.13 to 13.50 wt.%, respectively to 1.0 and 5.0 wt.% TNT. The glass transition temperature (Tg) increased from 182 to 220 °C too. The mechanical properties and corrosion resistance of epoxy resin greatly improved by using reinforcing TNT and this improvement increases with increase TNT wt.%.  相似文献   

5.
Silica nanoparticles (SN) and epoxidized natural rubber (ENR) were used as binary component fillers in toughening diglycidyl ether of bisphenol A (DGEBA) cured cycloaliphatic polyamine. For a single component filler system, the addition of ENR resulted in significantly improved fracture toughness (KIC) but reduction of glass transition temperature (Tg) and modulus of epoxy resins. On the other hand, the addition of SN resulted in a modest increase in toughness and Tg but significant improvement in modulus. Combining and balancing both fillers in hybrid ENR/SN/epoxy systems exhibited improvements in the Young’s modulus and Tg, and most importantly the KIC, which can be explained by synergistic impact from the inherent characteristics associated with each filler. The highest KIC was achieved with addition of small amounts of SN (5 wt.%) to the epoxy containing 5–7.5 wt.% ENR, where the KIC was distinctly higher than with the epoxy containing ENR alone at the same total filler content. Evidence through scanning electron microscopy (SEM) and transmission optical microscopy (TOM) revealed that cavitation of rubber particles with matrix shear yielding and particle debonding with subsequent void growth of silica nanoparticles were the main toughening mechanisms for the toughness improvements for epoxy. The fracture toughness enhancement for hybrid nanocomposites involved an increase in damage zone size in epoxy matrix due to the presence of ENR and SN, which led to dissipating more energy near the crack-tip region.  相似文献   

6.
Poly(ethylene phthalate) (PEP) and poly(ethylene phthalate–co‐ethylene terephthalate) were used to improve the brittleness of the cycloaliphatic epoxy resin 3,4‐epoxycyclohexylmethyl 3,4‐epoxycyclohexane carboxylate (Celoxide 2021?), cured with methyl hexahydrophthalic anhydride. The aromatic polyesters used were soluble in the epoxy resin without solvents and effective as modifiers for toughening the cured epoxy resin. For example, the inclusion of 20 wt % PEP (MW, 7400) led to a 130% increase in the fracture toughness (KIC) of the cured resin with no loss of mechanical and thermal properties. The toughening mechanism is discussed in terms of the morphological and dynamic viscoelastic behaviors of the modified epoxy resin system. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 388–399, 2002; DOI 10.1002/app.10363  相似文献   

7.
Aromatic polyesters, prepared by the reaction of aromatic dicarboxylic acids and 1,4-butanediol, were used to improve the toughness of bisphenol-A diglycidyl ether epoxy resin cured with p,p′-diaminodiphenyl sulfone. These polyesters contained poly(butylene phthalate)s (PBP), poly(butylene phthalate-co-butylene isophthalate)s, poly(butylene phthalate-co-butylene terephthalate)s, and poly(butylene phthalate-co-butylene 2,6-naphthalene dicarboxylate)s. All aromatic polyesters used in this study were soluble in the epoxy resin without solvents and were found to be effective as modifiers for toughening the cured epoxy resin. For example, the inclusion of 20 wt % PBP (MW 16,300) led to a 120% increase in the fracture toughness (KIC) of the cured resin with no loss of mechanical and thermal properties. The toughening mechanism was discussed in terms of the morphological and dynamic viscoelastic behaviors of the modified epoxy resin system. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
Mechanical properties of epoxy resin toughened with two different submicron particles of TiO2 at different weight fractions (1, 3, and 5%, respectively) were investigated. The first TiO2 particles are surface treated with Al2O3–SiO2, and the second are surface treated with Al2O3–ZrO2. The composites were characterized by tensile, flexural, pull off and abrasion tests, followed by X-ray photoelectron spectroscopy and scanning electron spectroscopy of the fracture surfaces. A small amount of TiO2 (~1%) submicron particles improves the flexural, abrasion and pull-off strengths, while amounts up to 5% significantly enhance tensile properties only. TiO2 particles surface treated with Al2O3–ZrO2 produce an epoxy composite with higher strength and weight loss but lower pull off strength and more brittle than that prepared with Al2O3–SiO2 particles. The TiO2 particles surface treated with Al2O3–SiO2 have a higher adherence to the epoxy composite matrix than the particles treated with Al2O3–ZrO2 as shown by scanning electron spectroscopy.  相似文献   

9.
The mechanical properties, thermomechanical properties, and fracture mechanic properties of block-copolymer (BCP), core–shell rubber (CSR) particles, and their hybrids in bulk epoxy/anhydride system were investigated at 23 °C. The results show that fracture toughness was increased by more than 268% for 10 wt % BCP, 200% for 12 wt % of CSR particles, and 100% for hybrid systems containing 3 wt % of each, BCP and CSR. The volume content of nanoparticles influences the final morphology and thus influences the tensile properties and fracture toughness of the modified systems. The toughening mechanisms induced by the BCP and CSR particles were identified as (1) localized plastic shear-band yielding around the particles and (2) cavitation of the particles followed by plastic void growth in the epoxy polymer. These mechanisms were modeled using the Hsieh et al. approach and the values of GIc of the different modified systems were calculated. Excellent agreement was found between the predicted and the experimentally measured fracture energies. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48471.  相似文献   

10.
In this study, the effects of multi‐walled carbon nanotubes (MWCNT), and its hybrids with iron oxide (Fe2O3) and copper oxide (CuO) nanoparticles on mechanical characteristics and thermal properties of epoxy binder was evaluated. Furthermore, simultaneous effects of using MWCNT with TiO2 as pigment and CaCO3 as filler for epoxy composites were determined. To investigate effects of nano‐ and micro‐particles on epoxy matrix, the samples were evaluated by TGA and DTA. It was found that the hybrid of MWCNT with nano metal oxides caused considerable increment in the tensile and flexural properties of epoxy samples in comparison to the single MWCNT containing samples at the same filler contents. Significant improvement in the thermal conductivity of epoxy samples was obtained by using TiO2 pigment along with MWCNT. The TiO2 pigment also caused considerable improvement in mechanical properties of the epoxy matrix and the MWCNT containing nanocomposite. The best mechanical and thermal properties of epoxy nanocomposites were obtained at 1.5 wt % of MWCNT and 7 wt % of TiO2 that it should be attributed to particle network forming of the particles which cause better nano/micro dispersion and properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43834.  相似文献   

11.
This study examined the effect of fullerene C60 on the mechanical properties of epoxy‐based polymer nanocomposites with different C60 loadings. Mechanical testing shows that compared with neat epoxy, mechanical and toughening properties of composites are greatly improved. Young's modulus increased 6–20% by inducing 0.01–0.12 wt% of fullerene into the matrix resin. Furthermore, the toughness of the composite was improved up to about 200%. The toughening mechanism has been discussed. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

12.
High chemical resistance is the main prerequisites for materials that are intended to be utilized in usages such as chemicals storage containers production. Nanocomposites of epoxy resin containing nanoclay, CaCO3 and TiO2 nanoparticles were prepared and their chemical resistance was studied. Moreover, the effect of electron beam irradiation was explored. TEM micrographs proved the dispersion of nano-size particles in the polymeric matrix. XRD patterns showed an exfoliated structure for nanocomposite containing 1 % nanoclay and intercalated structures for nanocomposites with higher nanoclay contents. SEM showed the pits that appeared in epoxy/nanoclay structure due to chemical corrosion. Weight loss measurements revealed that an addition of 1 % nanoclay to the epoxy matrix is effective for improving the chemical properties of the polymer. Desirable effect of 100 kGy irradiation on chemical resistance properties of the samples was also observed in both acidic and basic environments.  相似文献   

13.
ABSTRACT

Commercial and nano calcium carbonate (CaCO3) filled epoxy composites were processed at 2 to 10 wt% compositions. Nano size CaCO3 was synthesized using in-situ deposition technique. Its nanosize and mixing with epoxy were confirmed by X-ray diffraction (XRD) method. X-ray diffractograms show that complete exfoliation occurs in the case of nanosize particles while micron size particles do not exfoliate. The effect of nanosize and commercial CaCO3 was studied on mechanical and flame retarding properties. The impact strength of composite increased up to 6 wt% loading of nano filler and further decreased. Young's modulus was observed at 1400 Mpa and 1100 Mpa for nano and commercial CaCO3, respectively at their 10 wt% loading, while pure epoxy showed 1000 Mpa; likewise, flame retarding properties improved six to four times on loading of nano and commercial CaCO3, respectively in comparison to pure epoxy resin. The improvement is due to exfoliation of nano in epoxy matrix, which is observed by X-ray diffractograms.  相似文献   

14.
Aromatic polyesters, prepared by the reaction of phthalic or isophthalic acids and α,ω-alkanediols, were used to reduce the brittleness of bisphenol-A diglycidyl ether epoxy resin cured with methyl hexahydrophthalic anhydride. These polyesters were effective as modifiers for toughening of the epoxy resin system. The most suitable composition for modification of the epoxy resins was inclusion of 20 wt % of poly(ethylene phthalate) (MW 7200), which resulted in a 150% increase in the fracture toughness (KIC) of the cured resin at no expense of its mechanical properties. The effectiveness of poly(alkylene phthalate)s as modifiers decreased with increasing the chain length of alkylene units. The toughening mechanism was discussed based on the morphological and dynamic mechanical behaviors of the modified epoxy resin system.  相似文献   

15.
N-Phenylmaleimide (PMI)–N-(p-hydroxy)phenylmaleimide (HPMI)–styrene (St) terpolymers (HPMS), containing pendant p-hydroxyphenyl (HP) groups, were prepared and used to improve the toughness of triglycidyl aminocresol epoxy resin cured with p,p′-diaminodiphenyl sulfone. HPMS was effective as a modifier for the toughening of the epoxy resin. When using 15 wt % of HPMS (1.0 mol % HP unit, Mw 129,000), the fracture toughness (KIC) for the modified resin increased 190% with a medium loss of flexural strength. The toughening of epoxies could be attained because of the cocontinuous phase structure of the modified resins. The decrease in flexural strength was suppressed to some extent by introducing a functional group into the modifier. The toughening mechanism was discussed in terms of the morphological behavior of the modified epoxy resin system. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
A thermoplastic modification method was studied for the purpose of improving the toughness and heat resistance and decreasing the curing temperature of the cured epoxy/4, 4′‐diaminodiphenyl sulfone resin system. A polyimide precursor‐polyamic acid (PAA) was used as the modifier which can react with epoxy. The effects of PAA on curing temperature, thermal stability and mechanical properties were investigated. The initial curing temperature (Ti) of the resin with 5 wt % PAA decreased about 50°C. The onset temperature of thermal decomposition and 10 wt %‐weight‐loss temperature for the resin system containing 2 wt % PAA increased about 60°C and 15°C respectively. Besides, the value of impact toughness and plain strain fracture toughness for the modified epoxy resin increased ~ 190% and 55%, respectively. Those changes were attributed to the outstanding thermal and mechanical properties of polyimide, and more importantly to formation of semi‐interpenetrating polymer networks composed by the epoxy network and linear PAA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
The development of a facile and efficient approach to prepare high-toughness epoxy resin is vital but has remained an enormous challenge. Herein, we have developed a high-performance environment-friendly solid epoxy resin modified with epoxidized hydroxyl-terminated polybutadiene (EHTPB) via one-step melt blending. The characterization, mechanical performance, curing behavior, and thermal properties of EHTPB-modified epoxy resin were investigated. EHTPB-modified epoxy resin exhibited excellent toughness with a 100% increase in elongation at break of tensile than that of neat epoxy resin. The transfer stress and dissipated energy in the rubber phase were predominant mechanisms of toughening. The toughening effect of EHTPB on solid epoxy resin was better than that of some of the previously reported liquid epoxy resins. Meanwhile, at 10 wt % of EHTPB loading, the EHTPB-modified epoxy resin displayed high strength and 22 and 101% improvement of flexural strength and impact strength, respectively. Moreover, at 10 wt % of EHTPB loading, the activation energy of EHTPB-modified epoxy resin for curing reaction decreased from 73.89 to 65.12 kJ·mol−1, which is beneficial for the curing reaction. Furthermore, EHTPB-modified epoxy resin had a good thermal stability and the initial degradation temperature increased from 249 to 313 °C at 10 wt % of EHTPB loading. This work provides a simple-preparation and highly efficient and large-scale approach for the production of high-toughness environment-friendly solid epoxy resins. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48596.  相似文献   

18.
Different types of composite coatings were prepared by the blending of colloidal nanosilica (SiO2) and titanium dioxide (TiO2) in epoxy resin to investigate their coating performances. A fixed amount of silica nanoparticles (20 wt %) and different amounts (5, 10, and 15 wt %) of microsized TiO2 particles were used in the coatings. The functional groups of the formulated coatings were confirmed by Fourier transform infrared spectroscopy. These results indicate that the SiO2–TiO2 particles interacted well with epoxy. Scanning electron microscopy images of the composite coatings revealed a good dispersion of TiO2 particles at a lower amount of loading; this improved the adhesiveness, glass-transition temperature, thermal stability, and chemical resistance properties. At higher loadings, the performances decreased. The composite coatings were also characterized by their UV radiation-absorption properties with an ultraviolet–visible spectrophotometer. Interestingly, this property was found to be enhanced at higher loadings. An impressive result was noticed in the nanocomposites in terms of oxygen transmission rate performance compared to that of the neat epoxy. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47901.  相似文献   

19.
An attempt was made to toughen diglycidyl ether of bisphenol A (DGEBA) type epoxy resin with liquid natural rubber possessing hydroxyl functionality (HTLNR). Epon 250 epoxy monomer is cured using nadic methyl anhydride as hardener in presence of N, N dimethyl benzyl amine as accelerator. HTLNR of different concentrations up to 20 wt % is used as modifier for epoxy resin. The addition HTLNR to an anhydride hardener/epoxy monomer mixture has given rise to the formation of phase-separated structure, consisting of small spherical liquid natural rubber particles bonded to the surrounding epoxy matrix. The particle size increased with increase in rubber content. The viscoelastic properties of the blends were analyzed using dynamic mechanical thermal analysis. The Tg corresponding to epoxy rich phase was evident from the dynamic mechanical spectrum, while the Tg of the rubber phase was overlapped by the β relaxation of epoxy phase. Glass transition of the epoxy phase decreased linearly as a function of the amount of rubber. The mechanical properties such as impact and fracture toughness were also carefully examined. The impact and fracture toughness increase with HTLNR content. A threefold increase in impact strength was observed with 15 wt % HTLNR/epoxy blend. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
Reactive block copolymers (BCPs) provide a unique means for toughening epoxy thermosets because covalent linkages provide opportunities for greater improvement in the fracture toughness (KIC). In this study, a tailored reactive tetrablock copolymer, poly[styrene‐alt‐(maleic anhydride)]‐block‐polystyrene‐block‐poly(n‐butyl acrylate)‐block‐polystyrene, was incorporated into a diglycidyl ether of bisphenol A based epoxy resin. The results demonstrate the advantage of reactive BCP in finely tuning and controlling the structure of epoxy blends, even with 95 wt % epoxy‐immiscible triblocks. The size of the dispersed phase was efficiently reduced to submicrometer level. The mechanical properties, such as KIC, of these cured blends were investigated. The addition of 10 wt % reactive BCP into the epoxy resins led to considerable improvements in the toughness, imparting nearly a 70% increase in KIC. The designed reactive tetrablock copolymer opened good prospects because of its potential novel applications in toughening modification of engineering polymer composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42826.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号