首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article proposes an improved imperialistic competitive algorithm to solve multi-objective optimization problems. The proposed multi-objective imperialistic competitive algorithm (MOICA) uses the elitist strategy, based on the mutation and crossover as in genetic algorithms, and the Pareto concept to store simultaneously optimal solutions of multiple conflicting functions. Three performance metrics are used to evaluate the performance of the new algorithm: convergence to the true Pareto-optimal set, solution diversity and robustness, characterized by the variance over 10 runs. To validate the efficiency of the proposed algorithm, several multi-objective standard test functions with true solutions are used. The obtained results show that the MOICA outperforms most of the methods available in the literature. The proposed algorithm can also handle multi-objective engineering design problems with high dimensions.  相似文献   

2.
This study proposes particle swarm optimization (PSO) based algorithms to solve multi-objective engineering optimization problems involving continuous, discrete and/or mixed design variables. The original PSO algorithm is modified to include dynamic maximum velocity function and bounce method to enhance the computational efficiency and solution accuracy. The algorithm uses a closest discrete approach (CDA) to solve optimization problems with discrete design variables. A modified game theory (MGT) approach, coupled with the modified PSO, is used to solve multi-objective optimization problems. A dynamic penalty function is used to handle constraints in the optimization problem. The methodologies proposed are illustrated by several engineering applications and the results obtained are compared with those reported in the literature.  相似文献   

3.
4.
Guanghui Wang  Jie Chen  Bin Xin 《工程优选》2013,45(9):1107-1127
This article proposes a decomposition-based multi-objective differential evolution particle swarm optimization (DMDEPSO) algorithm for the design of a tubular permanent magnet linear synchronous motor (TPMLSM) which takes into account multiple conflicting objectives. In the optimization process, the objectives are evaluated by an artificial neural network response surface (ANNRS), which is trained by the samples of the TPMSLM whose performances are calculated by finite element analysis (FEA). DMDEPSO which hybridizes differential evolution (DE) and particle swarm optimization (PSO) together, first decomposes the multi-objective optimization problem into a number of single-objective optimization subproblems, each of which is associated with a Pareto optimal solution, and then optimizes these subproblems simultaneously. PSO updates the position of each particle (solution) according to the best information about itself and its neighbourhood. If any particle stagnates continuously, DE relocates its position by using two different particles randomly selected from the whole swarm. Finally, based on the DMDEPSO, optimization is gradually carried out to maximize the thrust of TPMLSM and minimize the ripple, permanent magnet volume, and winding volume simultaneously. The result shows that the optimized TPMLSM meets or exceeds the performance requirements. In addition, comparisons with chosen algorithms illustrate the effectiveness of DMDEPSO to find the Pareto optimal solutions for the TPMLSM optimization problem.  相似文献   

5.
This study proposes a novel momentum-type particle swarm optimization (PSO) method, which will find good solutions of unconstrained and constrained problems using a delta momentum rule to update the particle velocity. The algorithm modifies Shi and Eberhart's PSO to enhance the computational efficiency and solution accuracy. This study also presents a continuous non-stationary penalty function, to force design variables to satisfy all constrained functions. Several well-known and widely used benchmark problems were employed to compare the performance of the proposed PSO with Kennedy and Eberhart's PSO and Shi and Eberhart's modified PSO. Additionally, an engineering optimization task for designing a pressure vessel was applied to test the three PSO algorithms. The optimal solutions are presented and compared with the data from other works using different evolutionary algorithms. To show that the proposed momentum-type PSO algorithm is robust, its convergence rate, solution accuracy, mean absolute error, standard deviation, and CPU time were compared with those of both the other PSO algorithms. The experimental results reveal that the proposed momentum-type PSO algorithm can efficiently solve unconstrained and constrained engineering optimization problems.  相似文献   

6.
针对粒子群优化算法容易陷入局部最优的问题,提出了一种基于粒子群优化与分解聚类方法相结合的多目标优化算法。算法基于参考向量分解的方法,通过聚类优选粒子策略来更新全局最优解。首先,通过每条均匀分布的参考向量对粒子进行聚类操作,来促进粒子的多样性。从每个聚类中选择一个具有最小聚合函数适应度值的粒子,以平衡收敛性和多样性。动态更新全局最优解和个体最优解,引导种群均匀分布在帕累托前沿附近。通过仿真实验,与4种粒子群多目标优化算法进行对比。实验结果表明,提出的算法在27个选定的基准测试问题中获得了20个反世代距离(IGD)最优值。  相似文献   

7.
This article proposes the hybrid Nelder–Mead (NM)–Particle Swarm Optimization (PSO) algorithm based on the NM simplex search method and PSO for the optimization of multimodal functions. The hybrid NM–PSO algorithm is very easy to implement, in practice, since it does not require gradient computation. This hybrid procedure performed the exploration with PSO and the exploitation with the NM simplex search method. In a suite of 17 multi-optima test functions taken from the literature, the computational results via various experimental studies showed that the hybrid NM–PSO approach is superior to the two original search techniques (i.e. NM and PSO) in terms of solution quality and convergence rate. In addition, the presented algorithm is also compared with eight other published methods, such as hybrid genetic algorithm (GA), continuous GA, simulated annealing (SA), and tabu search (TS) by means of a smaller set of test functions. On the whole, the new algorithm is demonstrated to be extremely effective and efficient at locating best-practice optimal solutions for multimodal functions.  相似文献   

8.
针对机电系统可靠性设计问题,以可靠性和费用(或体积等)最优为目标建立可靠性设计的多目标优化模型.提出了自适应多目标差异演化算法,该算法提出了自适应缩放因子和混沌交叉率,采用改进的快速排序方法构造Pareto最优解,采用NSGA-II的拥挤操作对档案文件进行消减.采用自适应多目标差异演化算法获得多目标问题的Pareto最优解,利用TOPSIS方法对Pareto最优解进行多属性决策.实际工程结果表明:自适应多目标差异演化算法调节参数更少,且求得的Pareto最优解分布均匀;采用基于TOPSIS的多属性决策方法得到的结果合理可行.  相似文献   

9.
Multilevel redundancy allocation optimization problems (MRAOPs) occur frequently when attempting to maximize the system reliability of a hierarchical system, and almost all complex engineering systems are hierarchical. Despite their practical significance, limited research has been done concerning the solving of simple MRAOPs. These problems are not only NP hard but also involve hierarchical design variables. Genetic algorithms (GAs) have been applied in solving MRAOPs, since they are computationally efficient in solving such problems, unlike exact methods, but their applications has been confined to single-objective formulation of MRAOPs. This paper proposes a multi-objective formulation of MRAOPs and a methodology for solving such problems. In this methodology, a hierarchical GA framework for multi-objective optimization is proposed by introducing hierarchical genotype encoding for design variables. In addition, we implement the proposed approach by integrating the hierarchical genotype encoding scheme with two popular multi-objective genetic algorithms (MOGAs)—the strength Pareto evolutionary genetic algorithm (SPEA2) and the non-dominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, the proposed multi-objective hierarchical approach is applied to solve two hierarchical MRAOPs, a 4- and a 3-level problems. The proposed method is compared with a single-objective optimization method that uses a hierarchical genetic algorithm (HGA), also applied to solve the 3- and 4-level problems. The results show that a multi-objective hierarchical GA (MOHGA) that includes elitism and mechanism for diversity preserving performed better than a single-objective GA that only uses elitism, when solving large-scale MRAOPs. Additionally, the experimental results show that the proposed method with NSGA-II outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution sets.  相似文献   

10.
This article presents an electromechanical analysis for a piezoelectric bimorph actuator with a flexible extension, which is used to increase the tip deflection. The performance measuring attributes of such an actuator are derived, and a genetic algorithm is used for multi-objective optimization. The analysis reveals that for a thick flexible extension, the length of the extension provides Pareto optimal solutions for multi-objective optimization. The analysis also shows that as the thickness of the flexible extension decreases, the Pareto optimal solutions converge to a single solution for multi-objective optimization. We have considered nonlinear deflection behavior of piezoelectric materials at high electric fields, and series and parallel electrical connections in the analysis.  相似文献   

11.
This paper proposes a two-stage approach for solving multi-objective system reliability optimization problems. In this approach, a Pareto optimal solution set is initially identified at the first stage by applying a multiple objective evolutionary algorithm (MOEA). Quite often there are a large number of Pareto optimal solutions, and it is difficult, if not impossible, to effectively choose the representative solutions for the overall problem. To overcome this challenge, an integrated multiple objective selection optimization (MOSO) method is utilized at the second stage. Specifically, a self-organizing map (SOM), with the capability of preserving the topology of the data, is applied first to classify those Pareto optimal solutions into several clusters with similar properties. Then, within each cluster, the data envelopment analysis (DEA) is performed, by comparing the relative efficiency of those solutions, to determine the final representative solutions for the overall problem. Through this sequential solution identification and pruning process, the final recommended solutions to the multi-objective system reliability optimization problem can be easily determined in a more systematic and meaningful way.  相似文献   

12.
在多目标群搜索算法(multi-objective group search optimization, MGSO)基本原理的基础上,结合Pareto最优解理论,提出了基于约束改进的多目标群搜索算法(IMGSO),并应用于多目标的结构优化设计.算法的改进主要有3个方面:第一,引入过渡可行域的概念来处理约束条件;第二,利用庄家法来构造非支配解集;最后,结合禁忌搜索算法和拥挤距离机制来选择发现者,以避免解集过早陷入局部最优,并提高收敛精度.采用IMGSO优化算法分别对平面和空间桁架结构进行了离散变量的截面优化设计,并与MGSO优化算法的计算结果进行了比较,结果表明改进的多目标群搜索优化算法IMGSO与MGSO算法相比具有更好的收敛精度.通过算例表明:IMGSO算法得到的解集中的解能大部分支配MGSO算法的解,在复杂高维结构中IMGSO算法的优越性更加明显,且收敛速度也有一定的提高,可有效应用于多目标的实际结构优化设计.  相似文献   

13.
This study explores the use of teaching-learning-based optimization (TLBO) and artificial bee colony (ABC) algorithms for determining the optimum operating conditions of combined Brayton and inverse Brayton cycles. Maximization of thermal efficiency and specific work of the system are considered as the objective functions and are treated simultaneously for multi-objective optimization. Upper cycle pressure ratio and bottom cycle expansion pressure of the system are considered as design variables for the multi-objective optimization. An application example is presented to demonstrate the effectiveness and accuracy of the proposed algorithms. The results of optimization using the proposed algorithms are validated by comparing with those obtained by using the genetic algorithm (GA) and particle swarm optimization (PSO) on the same example. Improvement in the results is obtained by the proposed algorithms. The results of effect of variation of the algorithm parameters on the convergence and fitness values of the objective functions are reported.  相似文献   

14.
In this article, a new proposal of using particle swarm optimization algorithms to solve multi-objective optimization problems is presented. The algorithm is constructed based on the concept of Pareto dominance, as well as a state-of-the-art ‘parallel’ computing technique that intends to improve algorithmic effectiveness and efficiency simultaneously. The proposed parallel particle swarm multi-objective evolutionary algorithm (PPS-MOEA) is tested through a variety of standard test functions taken from the literature; its performance is compared with six noted multi-objective algorithms. The computational experience gained from the first two experiments indicates that the algorithm proposed in this article is extremely competitive when compared with other MOEAs, being able to accurately, reliably and robustly approximate the true Pareto front in almost every tested case. To justify the motivation behind the research of the parallel swarm structure, the computational results of the third experiment confirm the PPS-MOEA's merit in solving really high-dimensional multi-objective optimization problems.  相似文献   

15.
刘彬  刘泽仁  赵志彪  李瑞  闻岩  刘浩然 《计量学报》2020,41(8):1002-1011
为提高多目标优化算法的收敛精度和搜索性能,提出一种基于速度交流的多种群多目标粒子群算法。算法引入速度交流机制,将种群划分为多个子种群以实现速度信息共享,改善粒子单一搜索模式,提高算法的全局搜索能力。采用混沌映射优化惯性权重,提高粒子搜索遍历性和全局性,为降低算法在运行后期陷入局部最优Pareto前沿的可能性,对各个子种群执行不同的变异操作。将算法与NSGA-Ⅱ、SPEA2、Ab YSS、MOPSO、SMPSO和GWASF-GA先进多目标优化算法进行对比,实验结果表明:该算法得到的解集具有更好的收敛性和分布性。  相似文献   

16.
In this paper a new graph-based evolutionary algorithm, gM-PAES, is proposed in order to solve the complex problem of truss layout multi-objective optimization. In this algorithm a graph-based genotype is employed as a modified version of Memetic Pareto Archive Evolution Strategy (M-PAES), a well-known hybrid multi-objective optimization algorithm, and consequently, new graph-based crossover and mutation operators perform as the solution generation tools in this algorithm. The genetic operators are designed in a way that helps the multi-objective optimizer to cover all parts of the true Pareto front in this specific problem. In the optimization process of the proposed algorithm, the local search part of gM-PAES is controlled adaptively in order to reduce the required computational effort and enhance its performance. In the last part of the paper, four numeric examples are presented to demonstrate the performance of the proposed algorithm. Results show that the proposed algorithm has great ability in producing a set of solutions which cover all parts of the true Pareto front.  相似文献   

17.
Most real-world optimization problems involve the optimization task of more than a single objective function and, therefore, require a great amount of computational effort as the solution procedure is designed to anchor multiple compromised optimal solutions. Abundant multi-objective evolutionary algorithms (MOEAs) for multi-objective optimization have appeared in the literature over the past two decades. In this article, a new proposal by means of particle swarm optimization is addressed for solving multi-objective optimization problems. The proposed algorithm is constructed based on the concept of Pareto dominance, taking both the diversified search and empirical movement strategies into account. The proposed particle swarm MOEA with these two strategies is thus dubbed the empirical-movement diversified-search multi-objective particle swarm optimizer (EMDS-MOPSO). Its performance is assessed in terms of a suite of standard benchmark functions taken from the literature and compared to other four state-of-the-art MOEAs. The computational results demonstrate that the proposed algorithm shows great promise in solving multi-objective optimization problems.  相似文献   

18.
Multi-objective scheduling problems: Determination of pruned Pareto sets   总被引:1,自引:0,他引:1  
There are often multiple competing objectives for industrial scheduling and production planning problems. Two practical methods are presented to efficiently identify promising solutions from among a Pareto optimal set for multi-objective scheduling problems. Generally, multi-objective optimization problems can be solved by combining the objectives into a single objective using equivalent cost conversions, utility theory, etc., or by determination of a Pareto optimal set. Pareto optimal sets or representative subsets can be found by using a multi-objective genetic algorithm or by other means. Then, in practice, the decision maker ultimately has to select one solution from this set for system implementation. However, the Pareto optimal set is often large and cumbersome, making the post-Pareto analysis phase potentially difficult, especially as the number of objectives increase. Our research involves the post Pareto analysis phase, and two methods are presented to filter the Pareto optimal set to determine a subset of promising or desirable solutions. The first method is pruning using non-numerical objective function ranking preferences. The second approach involves pruning by using data clustering. The k-means algorithm is used to find clusters of similar solutions in the Pareto optimal set. The clustered data allows the decision maker to have just k general solutions from which to choose. These methods are general, and they are demonstrated using two multi-objective problems involving the scheduling of the bottleneck operation of a printed wiring board manufacturing line and a more general scheduling problem.  相似文献   

19.
In this article, two algorithms are proposed for constructing almost even approximations of the Pareto front of multi-objective optimization problems. The first algorithm is a hybrid of the ε-constraint and Pascoletti–Serafini scalarization methods for solving bi-objective problems. The second is a modification of the successive Pareto optimization (SPO) algorithm for solving three-objective problems. In these algorithms, the MATLAB fmincon solver is used to solve single-objective optimization problems, which returns a local optimal solution. Some metrics are considered to evaluate the quality of approximations obtained by the suggested algorithms on six test problems, and their results are compared with other algorithms (normal constraint, weighted constraint, SPO, differential evolution, multi-objective evolutionary algorithm/decomposition–differential evolution, non-dominated sorting genetic algorithm-II and S-metric selection evolutionary multi-objective algorithm). Experimental results show that the proposed algorithms provide almost even approximations of the whole Pareto front, and better quality of approximation and CPU time compared with established algorithms.  相似文献   

20.
This article presents a particle swarm optimizer (PSO) capable of handling constrained multi-objective optimization problems. The latter occur frequently in engineering design, especially when cost and performance are simultaneously optimized. The proposed algorithm combines the swarm intelligence fundamentals with elements from bio-inspired algorithms. A distinctive feature of the algorithm is the utilization of an arithmetic recombination operator, which allows interaction between non-dominated particles. Furthermore, there is no utilization of an external archive to store optimal solutions. The PSO algorithm is applied to multi-objective optimization benchmark problems and also to constrained multi-objective engineering design problems. The algorithmic effectiveness is demonstrated through comparisons of the PSO results with those obtained from other evolutionary optimization algorithms. The proposed particle swarm optimizer was able to perform in a very satisfactory manner in problems with multiple constraints and/or high dimensionality. Promising results were also obtained for a multi-objective engineering design problem with mixed variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号