首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
以正硅酸乙酯(TEOS)为无机前驱体、三乙烯四胺(TETA)为固化剂和γ-氨丙基三乙氧基硅烷(KH-550)为硅烷偶联剂,采用溶胶-凝胶一步法制备SiO2/EP(环氧树脂)杂化材料。研究了TEOS和丙酮含量对杂化材料的力学性能、热性能等影响,并对杂化材料的微观相态结构和性能进行了表征和分析。结果表明:当w(TEOS)=3%(相对于改性EP质量而言)时,不加丙酮的杂化材料具有相对最好的综合性能,其断面形貌呈韧性断裂,热变形温度和玻璃化转变温度均高于纯EP体系,生成的SiO2粒径为20 nm左右且分布较均匀;加入丙酮后的杂化材料透明性变好,但其力学强度和热性能均随丙酮含量增加而降低。  相似文献   

2.
A new type of inorganic‐polymer hybrid materials of epoxy/silica‐titania had been prepared by incorporating grafted epoxy, which had been synthesized by epoxy and tetraethoxysilane (TEOS), with highly reactive TEOS and tetrabutyltitanate (TBT) by using the in situ sol–gel process. The grafted epoxy was confirmed by Fourier transform infrared spectroscopy (FT‐IR) and 1H‐NMR spectroscopic technique. Results of FT‐IR spectroscopy and atomic force microscopy (AFM) demonstrated that epoxy chains have been covalently bonded to the surface of the SiO2‐TiO2 particles. The particles size of SiO2‐TiO2 are about 20–50 nm, as characterized by AFM. The experimental results showed that the glass‐transition temperatures and the modulus of the modified systems were higher than that of the unmodified system, and the impact strength was enhanced by two to three times compared with that of the neat epoxy. The morphological structure of impact fracture surface and the surface of the hybrid materials were observed by scanning electron microscopy and AFM, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1075–1081, 2006  相似文献   

3.
A series of ultraviolet‐curable hybrid materials was first synthesized here by sol–gel process based on tetraethoxysilane (TEOS) and polyurethane acrylate/epoxy acrylate resin. The functional groups in the hybrid materials were investigated by infrared spectroscopy (IR) analysis. The crystallinity of the hybrid materials and polymer resin was examined by X‐ray diffraction. Then, nearly uniform dispersion of SiO2 particles with the diameters ?100 nm were revealed by field emission scanning electron micrographs. The surface morphology was scanned by atomic force microscope. And, thermal stability was measured by thermogravimetric analysis for hybrid materials produced from different mass ratio of TEOS to polymer. The results show that the hybrid material from the mass ratio of TEOS to polymer of 0.4 : 1 performed desirable optimal thermal stability and uniform microstructure which is suitable for optical fiber coating in high temperature application. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
High performance silica/epoxy nanocomposites were prepared through mixing epoxy, tetraethyl orthosilicate (TEOS), γ-aminoproplytriethyoxy siliane(APTES), and triethyltrtramine (TETA) at 25 °C via sol-gel method on one-step. The effects of content of TEOS and coupling reagents on the mechanical and thermal properties of SiO2/EP composites were studied. Microcosmic morphology and properties of the hybrid materials were characterized by FT-IR, TEM, FESEM, and DSC. Results revealed that SiO2/EP composites achieve the optimal mechanical and thermal properties when the composites prepared with mass ratio of TEOS/APTES/epoxy for 3/2/100 without acetone. Compared with pristine epoxy, the tensile strength, elongation at break, impact strength and bend strength increased 67.6 %, 190 %, 82.1 % and 15.7 %, respectively. The further study was to investigate the content of TEOS and APTES effecting on mechanical properties and water sorption of fiber reinforced composites, which used the above compound as matrix resin.  相似文献   

5.
采用偶联剂KH-550对Al2O3表面进行处理,并将其添加到酚醛树脂(PF)中,成功制备了有机-无机杂化PF。通过红外光谱(FT-IR)仪、差示扫描量热(DSC)仪、扫描电镜(SEM)和材料试验机等对改性PF的结构、耐热性、微观形貌、力学性能和电学性能等进行分析。结果表明:Al2O3表面出现了Si-O键,说明KH-550成功处理了Al2O3;改性PF固化速率最快时所对应的峰值温度降低了8℃,使树脂固化更容易进行;当w(Al2O3)=5.0%时,复合材料的综合性能最好,其拉伸强度为664 MPa,弯曲强度为973 MPa,冲击强度为252 MPa,表面电阻率为4.00×1014Ω/cm,体积电阻率为1.93×1014Ω.cm。  相似文献   

6.
Poly (acrylonitrile‐butadiene‐styrene) (ABS) was used to modify diglycidyl ether of bisphenol‐A type of epoxy resin, and the modified epoxy resin was used as the matrix for making TiO2 reinforced nanocomposites and were cured with diaminodiphenyl sulfone for superior mechanical and thermal properties. The hybrid nanocomposites were characterized by using thermogravimetric analyzer (TGA), dynamic mechanical analyzer (DMA), universal testing machine (UTM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The bulk morphology was carefully analyzed by SEM and TEM and was supported by other techniques. DMA studies revealed that the DDS‐cured epoxy/ABS/TiO2 hybrid composites systems have two Tgs corresponding to epoxy and ABS rich phases and have better load bearing capacity with the addition of TiO2 particles. The addition of TiO2 induces a significant increase in tensile properties, impact strength, and fracture toughness with respect to neat blend matrix. Tensile toughness reveals a twofold increase with the addition of 0.7 wt % TiO2 filler in the blend matrix with respect to neat blend. SEM micrographs of fractured surfaces establish a synergetic effect of both ABS and TiO2 components in the epoxy matrix. The phenomenon such us cavitation, crack path deflection, crack pinning, ductile tearing of the thermoplastic, and local plastic deformation of the matrix with some minor agglomerates of TiO2 are observed. However, between these agglomerates, the particles are separated well and are distributed homogeneously within the polymer matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
KH-550改性纳米SiO2对环氧胶黏剂性能的影响   总被引:1,自引:0,他引:1  
制备了氨基硅烷偶联剂(KH-550)表面接枝改性纳米SiO2粒子,利用正交实验,讨论了改性剂用量、改性温度以及改性时间对活化指数的影响。并将KH-550硅烷偶联剂包覆纳米SiO2作为填料,以环氧树脂E-44为基体,制备环氧树脂胶黏剂,通过对胶黏剂进行剪切强度,扫描电镜和阻抗测试,研究了改性纳米SiO2对环氧胶黏剂粘结性能以及耐蚀性能的影响。结果表明:改性纳米SiO2填充的环氧胶黏剂的剪切强度得到提高,最大增幅达到2MPa,耐蚀性能也得到提高。  相似文献   

8.
Vapor‐grown carbon nanofiber (VGCNF)/water‐borne epoxy (WEP) and SiO2/WEP composites were successfully synthesized via freeze drying and hot‐press molding. VGCNFs were mixed directly with a WEP emulsion, while SiO2 was synthesized by in situ hydrolysis of TEOS solution (3‐triethoxysilylpropylamine (KH550): tetraethoxysilane (TEOS): absolute ethanol = 1:5:20, w/w/w) dispersed in the WEP emulsion. WEP composites were obtained from these mixtures by freeze drying and compressing under a pressure of 10 MPa at 120°C for 2 h. The morphology and mechanical properties of the WEP composites were investigated by transmission electron microscopy, scanning electron microscopy, dynamic mechanical analysis and tensile testing. The shape memory (SM) properties of the WEP composites were evaluated by fold‐deploy SM testing. The effects of filler content and recovery temperature on the SM properties were revealed through systematic variation. The results confirmed that VGCNF and in situ hydrolyzed SiO2 were homogenously dispersed and incorporated into the WEP matrices. Thus, significant improvements in the mechanical and SM properties of the composites were achieved. POLYM. COMPOS., 36:1712–1720, 2015. © 2014 Society of Plastics Engineers  相似文献   

9.
采用直接分散法和上浆剂法分别制备了环氧树脂/碳纤维复丝,通过红外光谱、分光光度法等分析方法对处理的石墨烯的表面官能团及表面形貌进行表征,借助扫描电子显微镜对碳纤维表面进行微观形貌观察,研究了石墨烯改性对环氧树脂/碳纤维复丝界面性能的影响。结果表明:石墨烯表面成功地接枝了硅烷偶联剂KH-560;接枝硅烷偶联剂KH-560的石墨烯的环氧树脂/碳纤维复丝的拉伸性能优于未经改性的石墨烯的复丝;上浆法制得的环氧树脂/碳纤维复丝的拉伸性能优于分散法制得的复丝的拉伸性能;上浆剂法制备的石墨烯改性的环氧树脂/碳纤维复丝的断裂强力比未经过改性的未上浆的复丝的提高了48.6%,拉伸强度提高了30.4%,断裂伸长率提高了90.9%。  相似文献   

10.
A method for situ preparing a hybrid material consisting of silica nanoparticles (SiO2) attached onto the surface of functionalized graphene nanoplatelets (f-GNPs) is proposed. Firstly, polyacrylic acid (PAA) was grafted to the surface of f-GNPs to increase reacting sites, and then 3-aminopropyltriethoxysilane (APTES) KH550 reacted with abovementioned product PAA-GNPs to obtain siloxane-GNPs, thus providing reaction sites for the growth of SiO2 on the surface of GNPs. Finally, the SiO2/graphene nanoplatelets (SiO2/GNPs) hybrid material is obtained through introducing siloxane-GNPs into a solution of tetraethyl orthosilicate, ammonia and ethanol for hours'' reaction. The results from Fourier transform infrared spectroscopy (FTIR) showed that SiO2 particles have situ grown on the surface of GNPs through chemical bonds as Si-O-Si. And the nanostructure of hybrid materials was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). All the images indicated that SiO2 particles with similar sizes were grafted on the surface of graphene nanoplatelets successfully. And TEM images also showed the whole growth process of SiO2 particles on the surface of graphene as time grows. Moreover, TGA traces suggested the SiO2/GNPs hybrid material had stable thermal stability. And at 900°C, the residual weight fraction of polymer on siloxane-GNPs was about 94.2% and that of SiO2 particles on hybrid materials was about 75.0%. However, the result of Raman spectroscopy showed that carbon atoms of graphene nanoplatelets became much more disordered, due to the destroyed carbon domains during the process of chemical drafting. Through orthogonal experiments, hybrid materials with various sizes of SiO2 particles were prepared, thus achieving the particle sizes controllable. And the factors’ level of significance is as follows: the quantity of ammonia > the quantity of tetraethyl orthosilicate (TEOS) > the reaction time.  相似文献   

11.
Rosin-modified o-cresol novolac epoxy resin (AEOCN) was synthesized by condensation of rosin acid with o-cresol formaldehyde novolac resin (AOCN). The AEOCN resin was further epoxidized using epichlorohydrin and sodium hydroxide. Rosin-based imidoamine curing agents (IAMDK, IASDK, and IAEDK) were also prepared by reacting dimaleopimaryl ketone (DMPK), a dimerized rosin product with aromatic diamines. The chemical structures of all synthesized products were confirmed by FTIR, 1H-NMR, 13C-NMR, and DEPT-135° spectroscopic techniques. The curing process of rosin-modified epoxy cured with imidoamine crosslinkers was studied using differential scanning calorimetry (DSC) and the results were compared to o-cresol novolac epoxy resin (EOCN) and some previously reported commercial-based systems. The thermal and mechanical properties of the cured epoxy thermosets were determined using a thermogravimetric analyzer (TGA) and a universal testing machine (UTM), respectively. The chemical resistance analysis was carried out by immersing cured epoxy coated panels in 1M NaOH, 1MHCl, and 1M NaCl solutions. The results were evaluated in terms of % weight loss method and the morphological changes that appeared due to chemical exposure were also investigated via scanning electron microscopy (SEM). This study presents the economical synthetic approach towards high-performance bio-based epoxy coating materials impending to replace some of the petrochemical compounds in coating industries.  相似文献   

12.
This study focuses on the use of tetraethyl orthosilicate (TEOS) as a silica source to decorate the surface of graphene oxide (GO) nanosheets and the use of N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane (Z-6020) as a coupling agent through a one-step in-situ sol-gel process. The results of the Fourier transform infrared spectroscopy (FT-IR), UV-visible, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) revealed that fine SiO2 nanoparticles have successfully been synthesized on the basal plane of GO by covalent bonding. The dispersion of GO sheets and GO–SiO2 nanohybrids within the epoxy matrix was studied using XRD and SEM techniques. Then, the effect of incorporating 0.1?wt% GO sheets and GO–SiO2 nanohybrids on the corrosion protection and barrier performance of the epoxy coating was also investigated. The results showed that the incorporation of GO–SiO2 into the epoxy matrix improved its thermal stability. The electrochemical impedance spectroscopy (EIS) test, potentiodynamic polarization and cathodic disbonding test showed that the corrosion protection performance was significantly enhanced by the incorporation of GO–SiO2 hybrids into the epoxy resin compared to epoxy/GO and neat epoxy resin, respectively. The water contact angle (CA) results confirmed the reduction of the hydrophobic nature of the surface after the incorporation of GO–SiO2 hybrids.  相似文献   

13.
Functionalized graphene oxide (FGO) modified by H3BO3 and (C2H5O)3–Si–(CH2)3NH2 was prepared and applied as an intumescent flame retardant (IFR) coating to reduce thermal transmission to a substrate and enhance fire resistance. Its structural features were tested using Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectrometry (EDS). The IFR coating presented here is based on melamine pyrophosphate (MPP), pentaerythritol (PER), and melamine-formaldehyde resin (MF), with waterborne epoxy resin (WEP) used as an adhesive. The flame retardancy of the coatings was tested on a small scale using the “big panel method” and cone calorimeter test (CCT). The coatings structure and thermostability were investigated using thermogravimetric analysis (TGA), and scanning electron microscopy (SEM), respectively. The results show that the addition of 0.083 phr FGO into the IFR system provided effective fire protection. The SEM results show that the char residues have better morphology, height, and structure, making them useful as a protective shield. Significantly, the IFR coating containing 0.05?g of FGO has proved effective in protecting plywood from fire.  相似文献   

14.
Synthesis and electron field emission properties of nanodiamond films   总被引:1,自引:0,他引:1  
Effects of CH4/H2 ratio and bias voltage of the microwave plasma-enhanced chemical vapor deposition (MPE-CVD) process on the nucleation behavior and associated characteristics of nanodiamonds were investigated. While the scanning electron microscopy (SEM) microstructure and Raman crystal structure of the films insignificantly vary with CH4/H2 ratio and bias voltage, electron field emission properties of the materials markedly change with these deposition parameters. The predominating factor modifying the electron field emission properties of the nanodiamond films is presumed to be the increase in the proportion of sp2-bonded grain boundaries when the grain size of the nanodiamond films decreases. Between these two major factors, the bias voltage shows more prominent effects on modifying the granular structure of the nanodiamonds than the CH4/H2 ratio does. The best electron field emission properties attainable are Je=500 μA/cm2 at 20 V/μm and E0=8.5 V/μm.  相似文献   

15.
Template smart inorganic polymers within an organic polymeric matrix to form hybrid nanostructured materials are a unique approach to induce novel multifunctionality. In particular, the fabrication of one-dimensional materials via electrospinning is an advanced tool, which has gained success in fulfilling the purpose to fabricate two-dimensional nanostructured materials. We have explored the formation of novel hybrid nanofibers by co-spinning of poly(ferrocenylphosphinoboranes) Fe A [{Fe(C5H5)(C5H4CH2PHBH2)} n] and Fe B [{Fe(C5H5)(C5H4PHBH2)} n] with poly(ethylene oxide) (PEO) and polystyrene (PS). Fe A and Fe B contain main-group elements and a ferrocene moiety as pendent group and have different properties compared to their only carbon-containing counterparts. The use of PEO and polystyrene provided a matrix to spin those inorganic polymers as hybrid nanofibers which were collected in the form of a nonwoven mat. They were characterized by multinuclear NMR spectroscopy, scanning electron microscopy (SEM), and IR spectroscopy. Thermal properties of the polymers have been checked by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). 1H, 31P, and 11B NMR and IR spectroscopy revealed the nature and types of interactions of the components after co-spinning. The SEM micrographs identify the underlying unidirectional morphology of the generated hybrid nanofibers. Nonetheless, the DSC and TGA confirmed the significant boost toward the thermal stability of the resultant multifunctional fibers. It is believed that these unique types of multifunctional electrospun nanofibers will open new avenues toward the next generation of miniaturized devices.  相似文献   

16.
In this study, hydrous (Zn3B6O12·3.5H2O) and anhydrous (ZnB2O4) forms of zinc borates were synthesized at 150 and 175°C under moderate pressure conditions (85 and 150 psi, respectively). Synthesized zinc borates were controllably incorporated (1, 5, and 10 wt%) in epoxy resin to prepare their nanocomposites. The flame-retardant and mechanical properties of these nanocomposites were determined and compared in terms of their flame spread testing, smoke density, limiting oxygen index, and flexural strength. Superior properties in terms of flame retardancy were observed for epoxy composites containing hydrous filler as compared to anhydrous zinc borates. Although flexural strength was observed to be decreased with increasing filler concentration, the marked drop is lower for composites with hydrous zinc borate as compared to the anhydrous one. The variations in flame-retardant and mechanical properties of composites with both types of fillers are related to their morphological (field emission scanning electron microscopy), X-ray diffraction (XRD) analysis, Fourier Transform Infrared (FTIR), differential scanning calorimetry, and thermogravimetry analysis and explained with condensed phase mechanism.  相似文献   

17.
Submicron titanium dioxide (TiO2) was used in different weight fractions as a toughening agent for amine-cured epoxy resin. After the use of X-ray photoelectron spectroscopy (XPS), which confirmed that the TiO2 particles were evenly distributed in the cross-linked epoxy resin matrix, the composites were characterized by tensile and impact testing, followed by scanning electron microscopy of the fracture surfaces. The results indicated that the submicron TiO2 toughening particles markedly improved the mechanical properties of the cured epoxy resin compared to the untoughened epoxy resin. The optimal properties were achieved at a TiO2 concentration of 4 wt. %, at which point the toughness and the impact resistance values increased by 65% and 60%, respectively. The results also indicated that an increase in the amount of TiO2 causes a decrease in toughness. Stress whitening, out-of-plane flaking, and thumbnail markings were the major visible features of the toughening mechanisms.

It is suggested that, at 4 wt. % of the submicron TiO2 particles, microvoids are developed in the epoxy matrix. These microvoids are able to absorb some of the deformation work applied to the material, and thus enhance the toughness of the material. On increasing the TiO2 content in the matrix (> 4 wt. %), the submicron particles got closer to each other and the microvoids were converted to macrovoids, which may act as stress concentrating flaws, leading to the deterioration of the mechanical properties of the epoxy resin.  相似文献   

18.
Epoxy-based nanocomposites reinforced with nonfunctionalized porous graphene (NPG), carboxylated porous graphene (CNPG), and amine-functionalized porous graphene (ANPG) were investigated with regard to mechanical properties, thermal stability, and electrical conductivity. Nanomaterials were added to the epoxy matrix in varying contents of 0.5, 1, and 2 wt %. Generally, mechanical properties were improved as a result of introducing nanomaterials into the epoxy resin. However, the amelioration of toughness was only observed in functionalized NPGs/epoxy nanocomposites. Field emission scanning electron microscopy images showed that functionalized nanomaterials induced a rougher fracture surface compared to the neat epoxy. Dynamic mechanical analysis along with differential scanning calorimetry confirmed an increment in the glass-transition temperature (Tg) of the reinforced nanocomposites. Also, they proved that functionalization made the epoxy network tougher and more flexible. The electrical conductivity and thermal stability of the epoxy resin were also improved when loaded with nanomaterials. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47475.  相似文献   

19.
The hybrid material of EP‐POSS mixture was synthesized by the hydrolysis and condensation of (γ‐glycidoxypropyl) trimethoxysilane. A series of binary systems of EP‐POSS/epoxy blends, epoxy resin modified by silica nanoparticles (SiO2/epoxy), and ternary system of SiO2/EP‐POSS/epoxy nanocomposite were prepared. The dispersion of SiO2 in the matrices was evidenced by transmission electron micrograph, and the mechanical properties, that is, flexural strength, flexural modulus, and impact strength were examined for EP‐POSS/epoxy blends, SiO2/epoxy, and SiO2/EP‐POSS/epoxy, respectively. The fractured surface of the impact samples was observed by scanning electron micrograph. Thermogravimetry analysis were applied to investigate the different thermal stabilities of the binary system and ternary system by introducing EP‐POSS and SiO2 to epoxy resin. The results showed that the impact strength, flexural strength, and modulus of the SiO2/EP‐POSS/epoxy system increased around by 57.9, 14.1, and 44.0% compared with the pure epoxy resin, Ti, Tmax and the residues of the ternary system were 387°C, 426°C, and 25.2%, increased remarkably by 20°C, 11°C and 101.6% in contrast to the pure epoxy resin, which was also higher than the binary systems. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 810‐819, 2013  相似文献   

20.
Sorption-enhanced steam reforming (SESR) process is usually highly energy intensive in producing high-purity hydrogen. Herein, the sorbent decarbonation was conducted in the presence of O2 to enable the exothermic reaction between CaO and CoOx to form calcium cobaltate (CCO). By utilizing CCO as oxygen carrier (OC), the chemical-looping methane combustion was employed prior to the SESR of glycerol (SESRG), by which CCO was prereduced to Co catalysts and CaO sorbent, thereby significantly improving the H2 yield from SESRG. With a Pt-doped CCO acting as precatalyst, CO2 sorbent, and OC, we realized 70% CH4 conversion and 96 vol% H2 with 120% yield (based on glycerol) for 20 cycles, and the excess H2 was due to steam gasification of coke. The promoting effects of Pt toward CH4 conversion and H2 production were rationalized by CH4 temperature-programmed reduction, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. Our results demonstrate the feasibility of process integration enabled by multifunctional materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号