首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
陈站  邱卫根  张立臣 《计算机应用研究》2020,37(4):1244-1246,1251
由于字形的复杂多变,脱机手写汉字的识别一直是模式识别的难题,深度卷积神经网络的发展为其提供了一种直接有效的解决方案。研究基于inceptions 结构神经网络的脱机手写汉字识别,提出了一种inception结构的改进方法,它具有结构更加简单、网络深度扩展更加容易、需要的训练参数量更少的优点。该方法在数据集CISIA-HWDB1.1 上进行了实验验证,采用随机梯度下降优化算法,模型达到了96.95%的平均准确率。实验结果表明,使用改进的inception结构在图像分类上具有更好的鲁棒性,更容易扩展到其他应用领域。  相似文献   

2.
针对卷积神经网络对手写数字识别训练在卷积核随机初始化情况下收敛速度慢和识别率低的问题,提出一种主成分分析(PCA)初始化卷积核的卷积神经网络(CNN)手写数字识别算法。算法首先选取训练样本集并将其送入CNN,在相应层对Feature Map进行全覆盖取图像块处理,然后进行分层PCA学习,将学习到的特征向量做为对应卷积层的卷积核参数进行初始化,最后再用这些卷积核对原始图像进行卷积操作。实验结果表明,与随机初始化卷积核的CNN手写数字识别算法相比,改进的算法在应用MNIST数据库训练时不仅收敛,而且在产生相同均方误差的情况下迭代次数少,识别率高。  相似文献   

3.
针对手写英文识别中易混字符的识别问题,提出一种结合多维特征和候选项以区分易混字符的识别方法.利用卷积神经网络(convolutional neural networks,CNN)对手写英文字符进行识别,根据初始字符识别信息确定易混字符的类别;利用多维特征,设计针对不同类别易混字符的识别规则;由易混字符和其相连字符组成候选项单词,结合语料库以及字符间构成关系,最终对易混字符进行识别判断.实验结果表明,该方法在解决了易混字符的识别问题后,识别手写英文字符的平均准确率达到98.67%,具有一定应用价值.  相似文献   

4.
手写汉字识别是模式识别与机器学习的重要研究方向和应用领域;近年来,随着深度学习理论方法的完善、新技术的层出不穷,深度神经网络在图像识别分类、图像生成等典型应用中取得了突破性的进展,其中,深度残差网络作为最新的研究成果,已成功应用于手写数字识别、图片识别分类等多个领域;将研究深度残差网络在脱机孤立手写汉字识别中的应用方法,通过改进残差学习模块的单元结构,优化深度残差网络性能,同时通过对训练集的预处理,从数据层面实现训练生成模型性能的提升,最后设计实验,验证深度残差网络、End-to-End模式在脱机手写汉字识别中的可行性,分析、总结存在的问题及今后的研究方向。  相似文献   

5.
粗糙几何学将粗糙集理论应用于几何学之中,利用图形的上近似变换,在更粗糙的粒度上构造并分析几何图形.本文着重介绍了粗糙几何学的研究动机和理论基础,同时将其应用于脱机手写数字识别,并对粗糙几何未来的研究方向进行了展望.  相似文献   

6.
本文提出了一种新的组合特征.通过时方向线素特征、轮廓特征和有效行特征进行有效组合形成一组新的组合特征.该新的组合特征无需对样本进行细化等操作,减少了前期的预处理工作量,也减少了因细化变形而引起的误识,用BP人工神经网络作为分类器,实验表明效果良好.  相似文献   

7.
脱机手写汉字识别的最优采样特征新方法   总被引:5,自引:1,他引:5       下载免费PDF全文
在脱机手写汉字识别中,笔画形变是造成识别率下降的主要原因,减少笔画形变的影响是提高脱机手写汉字识别率的关键。针对上述问题,提出了最优采样特征。该特征以目前被广泛应用的方向线素特征为基础,在一定的约束条件下,通过移动采样点的位置,可以适应笔画的形变。从而减少特征的类内方差,提高特征的可分性,改进了识别性能。通过在THCHR样本集上进行实验,并对最优采样特征和方向线素特征的实验结果进行比较,验证了最优采样特征的识别率优于方向线索特征。  相似文献   

8.
针对传统脱机手写汉字识别的过程复杂、精度低,而常用卷积神经网络的特征信息提取不充分,同时存在相同特征信息的重叠和冗余问题。设计了一个特征分组提取融合的深度卷积神经网络模型。通过多级堆叠的特征分组提取模块,提取图像的深层抽象特征信息,并进行特征信息之间的交流融合。利用设计的下采样和通道扩增模块,在降低特征维度的同时保留图像重要信息。将特征信息进行精炼和浓缩,来解决特征信息的重叠和冗余问题。最终训练出的神经网络达到top1当前先进的正确率为97.16%,同时top5正确率为99.36%,并具有很好的泛化能力。  相似文献   

9.
纪绪 《信息与电脑》2023,(12):169-171+183
文章针对计算机视觉领域的手写数字识别问题,介绍了神经网络原理、卷积神经网络(Convolutional Neural Networks,CNN)构成、TensorFlow框架等相关知识,并应用卷积神经网络在MNIST数据集上进行验证。实验结果表明,基于卷积神经网络识别手写数字具有较高的准确性。  相似文献   

10.
为解决因手写书法作品种类繁多而识别困难的问题,降低人们观赏书法的门槛,本文提出了基于深度学习的手写书法字体识别算法.识别过程中首先使用投影法等图像处理方法对书法作品图像中的汉字进行定位和分割,然后分别利用GoogLeNet Inception-v3模型和ResNet-50残差网络进行书体风格识别和字形识别.实验结果表明...  相似文献   

11.
手写体数字识别有着重大的使用价值,用多层BP网络来识别手写体数字是手写体数字识别的一大进步,但是,用单纯的BP网络来识别也存在识别精度不高等的问题。将BP网络技术和数字本身的结构特征结合起来,提出了一种基于结构特征分类BP网络的手写体数字识别新方法。首先提取点、环等数字特征值,并根据一些特征进行分类;然后再运用BP神经网络识别,以提高网络的识别能力;最后,选取了500个人的0~9的手写体数字,运用以上算法进行BP神经网络识别,用3000个手写体数字作为训练样本,2000个其他的样本进行测试,网络收敛后,识别率达到96%以上,比原来有一定的提高。  相似文献   

12.
手写体字符识别的多特征多分类器设计   总被引:4,自引:0,他引:4  
特征选取和分类器设计是字符识别系统设计的关键。文章针对手写体汉字和阿拉伯数字混和字符集的识别提出了依据不同的分类要求,分别选取不同的字符特征并采用神经网络多分类器进行识别的设计方法。实验结果表明,该方法用于手写体混合字符集的识别是行之有效的。  相似文献   

13.
手写体数字识别是模式识别研究领域多年来的热点,BP人工神经网络是目前应用最广泛的神经网络模型之一。将两者融合并结合Matlab软件,提出了一种简单的基于BP神经网络数字识别的方法,仿真实验结果表明,该方法识别效果良好,准确率高,有一定实用性。  相似文献   

14.
A handwritten Chinese character recognition method based on primitive and compound fuzzy features using the SEART neural network model is proposed. The primitive features are extracted in local and global view. Since handwritten Chinese characters vary a great deal, the fuzzy concept is used to extract the compound features in structural view. We combine the two categories of features and use a fast classifier, called the Supervised Extended ART (SEART) neural network model, to recognize handwritten Chinese characters. The SEART classifier has excellent performance, is fast, and has good generalization and exception handling abilities in complex problems. Using the fuzzy set theory in feature extraction and the neural network model as a classifier is helpful for reducing distortions, noise and variations. In spite of the poor thinning, a 90.24% recognition rate on average for the 605 test character categories was obtained. The database used is CCL/HCCR3 (provided by CCL, ITRI, Taiwan). The experiment not only confirms the feasibility of the proposed system, but also suggests that applying the fuzzy set theory and neural networks to recognition of handwritten Chinese characters is an efficient and promising approach.  相似文献   

15.
卷积神经网络(Convolutional neural network,CNN)是一种常见的深度学习模型,受人类视觉认知机制启发而来,能够从原始图像得到有效的特征表达。CNN模型在图像识别领域不断取得突破,但是在训练过程中需要花费大量时间。随机森林(Random forest,RF)在分类和回归上具有很高的精度,训练速度快并且不容易出现过拟合的问题,现有的基于RF的分类器都依赖手工选取的特征。针对以上问题,本文提出了基于CNN的C-RF模型,把CNN提取到的特征输入RF中进行分类。由于随机权值网络同样可以得到有效的结果,所以不用梯度算法调整网络参数,以免消耗大量时间。最后在MNIST数据集和Rotated MNIST数据集上进行了实验,结果表明C-RF模型的分类精度比RF有了较大的提高,同时泛化能力也有所提升。  相似文献   

16.
手写体数字识别是多年来的研究热点,也是字符识别中的一个特别问题。由于手写体数字字体变化很大,传统的识别方法很难达到高的识别率。针对传统的数字识别方法的复杂性和局限性,提出了一种基于BP神经网络的手写体数字的识别方法。该方法在提取手写体数字点特征、笔划密度特征基础上,利用改进的BP神经网络进行训练识别。经实验,识别率达94%。实验结果表明,该方法对手写体数字识别效果良好,不仅简化了传统识别的繁杂性,而且提高了识别的准确性。  相似文献   

17.
基于反馈的手写体字符识别方法的研究   总被引:13,自引:0,他引:13  
该文提出了一种基于反馈的手写体字符识别方法。该方法将人工神经网络结构及学习算法运用于系统反馈机制中,并从理论上证明了该学习方法是收敛的,保证了算法的有效性。同时给出了反馈的可视化约束及反馈的判别准则。试验结果证明了该方法大大降低了高噪音手写体数字的识别率。该方法指出了一条进一步提高手写体字符系统性能的新途径。  相似文献   

18.
王建平  陈军  徐晓冰  王熹徽 《微机发展》2006,16(10):104-107
提出了一种模糊统计方法的脱机手写体汉字特征提取方法,结合小波网格方法和汉字笔画密度特征方法对汉字进行特征提取,并运用支持向量机方法,通过机器学习对脱机手写汉字识别。仿真实验表明,支持向量机方法在脱机手写汉字识别中有良好的识别性能及模糊统计方法是有效的。  相似文献   

19.
最近,基于骨架的动作识别研究受到了广泛关注.因为图卷积网络可以更好地建模非规则数据的内部依赖,ST-GCN (spatial temporal graph convolutional network)已经成为该领域的首选网络框架.针对目前大多数基于ST-GCN的改进方法忽视了骨架序列所蕴含的几何特征.本文利用骨架关节几何特征,作为ST-GCN框架的特征补充,其具有视觉不变性和无需添加额外参数学习即可获取的优势,进一步地,利用时空图卷积网络建模骨架关节几何特征和早期特征融合方法,构成了融合几何特征的时空图卷积网络框架.最后,实验结果表明,与ST-GCN、2s-AGCN和SGN等动作识别模型相比,我们提出的框架在NTU-RGB+D数据集和NTU-RGB+D 120数据集上都取得了更高准确率的效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号