共查询到18条相似文献,搜索用时 62 毫秒
1.
由于字形的复杂多变,脱机手写汉字的识别一直是模式识别的难题,深度卷积神经网络的发展为其提供了一种直接有效的解决方案。研究基于inceptions 结构神经网络的脱机手写汉字识别,提出了一种inception结构的改进方法,它具有结构更加简单、网络深度扩展更加容易、需要的训练参数量更少的优点。该方法在数据集CISIA-HWDB1.1 上进行了实验验证,采用随机梯度下降优化算法,模型达到了96.95%的平均准确率。实验结果表明,使用改进的inception结构在图像分类上具有更好的鲁棒性,更容易扩展到其他应用领域。 相似文献
2.
针对卷积神经网络对手写数字识别训练在卷积核随机初始化情况下收敛速度慢和识别率低的问题,提出一种主成分分析(PCA)初始化卷积核的卷积神经网络(CNN)手写数字识别算法。算法首先选取训练样本集并将其送入CNN,在相应层对Feature Map进行全覆盖取图像块处理,然后进行分层PCA学习,将学习到的特征向量做为对应卷积层的卷积核参数进行初始化,最后再用这些卷积核对原始图像进行卷积操作。实验结果表明,与随机初始化卷积核的CNN手写数字识别算法相比,改进的算法在应用MNIST数据库训练时不仅收敛,而且在产生相同均方误差的情况下迭代次数少,识别率高。 相似文献
3.
针对手写英文识别中易混字符的识别问题,提出一种结合多维特征和候选项以区分易混字符的识别方法.利用卷积神经网络(convolutional neural networks,CNN)对手写英文字符进行识别,根据初始字符识别信息确定易混字符的类别;利用多维特征,设计针对不同类别易混字符的识别规则;由易混字符和其相连字符组成候选项单词,结合语料库以及字符间构成关系,最终对易混字符进行识别判断.实验结果表明,该方法在解决了易混字符的识别问题后,识别手写英文字符的平均准确率达到98.67%,具有一定应用价值. 相似文献
4.
手写汉字识别是模式识别与机器学习的重要研究方向和应用领域;近年来,随着深度学习理论方法的完善、新技术的层出不穷,深度神经网络在图像识别分类、图像生成等典型应用中取得了突破性的进展,其中,深度残差网络作为最新的研究成果,已成功应用于手写数字识别、图片识别分类等多个领域;将研究深度残差网络在脱机孤立手写汉字识别中的应用方法,通过改进残差学习模块的单元结构,优化深度残差网络性能,同时通过对训练集的预处理,从数据层面实现训练生成模型性能的提升,最后设计实验,验证深度残差网络、End-to-End模式在脱机手写汉字识别中的可行性,分析、总结存在的问题及今后的研究方向。 相似文献
5.
6.
7.
基于卷积神经网络在手写数字识别上的应用,对卷积神经网络模型进行介绍.本实验使用python编程语言在Keras上搭建模型,并对模型进行训练.实验数据集为MNIST.模型训练完毕后,对准确率进行评估.最后对测试数据进行预测以及利用混淆矩阵对哪些数字准确率较高和哪些数字容易混淆进行评估. 相似文献
8.
脱机手写汉字识别的最优采样特征新方法 总被引:5,自引:1,他引:5
在脱机手写汉字识别中,笔画形变是造成识别率下降的主要原因,减少笔画形变的影响是提高脱机手写汉字识别率的关键。针对上述问题,提出了最优采样特征。该特征以目前被广泛应用的方向线素特征为基础,在一定的约束条件下,通过移动采样点的位置,可以适应笔画的形变。从而减少特征的类内方差,提高特征的可分性,改进了识别性能。通过在THCHR样本集上进行实验,并对最优采样特征和方向线素特征的实验结果进行比较,验证了最优采样特征的识别率优于方向线索特征。 相似文献
9.
针对传统脱机手写汉字识别的过程复杂、精度低,而常用卷积神经网络的特征信息提取不充分,同时存在相同特征信息的重叠和冗余问题。设计了一个特征分组提取融合的深度卷积神经网络模型。通过多级堆叠的特征分组提取模块,提取图像的深层抽象特征信息,并进行特征信息之间的交流融合。利用设计的下采样和通道扩增模块,在降低特征维度的同时保留图像重要信息。将特征信息进行精炼和浓缩,来解决特征信息的重叠和冗余问题。最终训练出的神经网络达到top1当前先进的正确率为97.16%,同时top5正确率为99.36%,并具有很好的泛化能力。 相似文献
10.
11.
卷积神经网络(Convolutional neural network,CNN)是一种常见的深度学习模型,受人类视觉认知机制启发而来,能够从原始图像得到有效的特征表达。CNN模型在图像识别领域不断取得突破,但是在训练过程中需要花费大量时间。随机森林(Random forest,RF)在分类和回归上具有很高的精度,训练速度快并且不容易出现过拟合的问题,现有的基于RF的分类器都依赖手工选取的特征。针对以上问题,本文提出了基于CNN的C-RF模型,把CNN提取到的特征输入RF中进行分类。由于随机权值网络同样可以得到有效的结果,所以不用梯度算法调整网络参数,以免消耗大量时间。最后在MNIST数据集和Rotated MNIST数据集上进行了实验,结果表明C-RF模型的分类精度比RF有了较大的提高,同时泛化能力也有所提升。 相似文献
12.
手写体数字识别有着重大的使用价值,用多层BP网络来识别手写体数字是手写体数字识别的一大进步,但是,用单纯的BP网络来识别也存在识别精度不高等的问题。将BP网络技术和数字本身的结构特征结合起来,提出了一种基于结构特征分类BP网络的手写体数字识别新方法。首先提取点、环等数字特征值,并根据一些特征进行分类;然后再运用BP神经网络识别,以提高网络的识别能力;最后,选取了500个人的0~9的手写体数字,运用以上算法进行BP神经网络识别,用3000个手写体数字作为训练样本,2000个其他的样本进行测试,网络收敛后,识别率达到96%以上,比原来有一定的提高。 相似文献
13.
针对提高不同笔体下的手写识别准确率进行了研究,将深度卷积神经网络与自动编码器相结合,设计卷积自编码器网络层数,形成深度卷积自编码神经网络。首先采用双线性插值方法分别对MNIST数据集与一万幅自制中国大学生手写数字图片进行图像预处理,然后先使用单一MNIST数据集对深度卷积自编码神经网络进行训练与测试;最后使用MNIST与自制数据集中5 000幅混合,再次训练该网络,对另外5 000幅进行测试。实验数据表明,所提深度卷积自编码神经网络在MNIST测试集正确率达到99.37%,有效提高了准确率;且5 000幅自制数据集模型测试正确率达99.33%,表明该算法实用性较强,在不同笔体数字上得到了较高的识别准确率,模型准确有效。 相似文献
14.
手写体数字识别是模式识别研究领域多年来的热点,BP人工神经网络是目前应用最广泛的神经网络模型之一。将两者融合并结合Matlab软件,提出了一种简单的基于BP神经网络数字识别的方法,仿真实验结果表明,该方法识别效果良好,准确率高,有一定实用性。 相似文献
15.
为实现对葡萄叶片氮素含量快速、便捷的识别,在卷积神经网络VGG-16网络结构基础上,将数据增广后的图像按不同梯度划分进行模型训练,通过十折交叉验证法探究最佳的训练集与验证集分配比例,并构建4个不同深度的网络模型进行训练对比,采用全局平均池化代替全连接层约简网络参数量。训练结果表明,氮含量梯度设为0. 70%、0. 35%和0. 175%时,室内简单背景识别准确率分别为85. 9%、76. 2%和71. 1%;晴天室外复杂背景下识别准确率分别为44. 6%、35. 0%和30. 4%。研究结果表明利用VGG-16建立的网络学习模型对葡萄叶片氮含量识别提供了一种新的便捷方法,对农业信息化和智能化技术应用具有一定促进作用。 相似文献
16.
为提高小尺度复杂图像识别准确率,通过对LeNet-5卷积神经网络并入一个新通道,让其处理与边缘有关的信息。结合两种通道产生的不同特征构造分类器,提出一种基于边缘的双路卷积神经网络,对小尺度复杂数据集进行识别。在包含10类产品数据上分类的结果表明,双路卷积神经网络的识别准确率远高于传统网络。最后通过神经网络可视化算法对双路卷积神经网络进行了可视化分析。 相似文献
17.
A handwritten Chinese character recognition method based on primitive and compound fuzzy features using the SEART neural network model is proposed. The primitive features are extracted in local and global view. Since handwritten Chinese characters vary a great deal, the fuzzy concept is used to extract the compound features in structural view. We combine the two categories of features and use a fast classifier, called the Supervised Extended ART (SEART) neural network model, to recognize handwritten Chinese characters. The SEART classifier has excellent performance, is fast, and has good generalization and exception handling abilities in complex problems. Using the fuzzy set theory in feature extraction and the neural network model as a classifier is helpful for reducing distortions, noise and variations. In spite of the poor thinning, a 90.24% recognition rate on average for the 605 test character categories was obtained. The database used is CCL/HCCR3 (provided by CCL, ITRI, Taiwan). The experiment not only confirms the feasibility of the proposed system, but also suggests that applying the fuzzy set theory and neural networks to recognition of handwritten Chinese characters is an efficient and promising approach. 相似文献
18.
目的 文档图形的几何校正是指通过图像处理的方法对图像采集过程中存在的扭曲、畸变和歪斜等几何干扰进行处理,以提升原始图像的视觉效果与光学字符识别(optical character recognition,OCR)精度。在深度学习普及以前,传统的图像处理方法需要使用激光扫描仪等辅助硬件或在多视角下对文档进行拍摄,且算法的鲁棒性欠佳。深度学习方法构建模型能规避传统算法的不足,但在现阶段这些模型还存在一定的局限性。针对现有算法的缺陷,提出了一种集成文档区域定位与校正的轻量化几何校正网络(asymmetric geometry correction network,AsymcNet),端到端地实现文档图像的几何校正。方法 AsymcNet由用于文档区域定位的分割网络和用于校正网格回归的回归网络构成,两个子网络以级联的形式搭设。由于分割网络的存在,AsymcNet对于各种视野下的文档图像均能取得良好的校正效果。在回归网络部分,通过减小输出回归网格的分辨率来降低AsymcNet在训练及推理时的显存耗用和时长。结果 在自制的测试数据集中与业内最新的4种方法进行了比较,使用AsymcNet可以将原始图像的多尺度结构相似度(multi-scale structural similarity,MS-SSIM)从0.318提升至0.467,局部畸变(local distortion,LD)从33.608降低至11.615,字符错误率(character error rate,CER)从0.570降低至0.273。相比于业内效果较好的DFE-FC(displacement flow estimation with fully convolutional network),AsymcNet的MS-SSIM提升了0.036,LD降低了2.193,CER降低了0.033,且AsymcNet处理单幅图像的平均耗时仅为DFE-FC的8.85%。结论 实验验证了本文所提出AsymcNet的有效性与先进性。 相似文献