首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
The graft copolymerization of butyl acrylate onto chitosan in acetic acid aqueous solution was investigated, using the γ‐ray of 60Co γ‐irradiation method. Fourier transform infrared spectra analysis, X‐ray diffraction analysis, and scanning electron microscopy characterized the graft copolymer. The effect of synthesis variables in the graft copolymerization have been discussed in the light of grafting efficiency, grafting percentage, and homopolymer percentage. Hydrophilicity and impact strength of the films formed from copolymer solution were tested and their feasibility as seed coating was studied. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2855–2860, 2003  相似文献   

2.
An attempt has been made to graft copolymerize 4-vinyl pyridine onto isotactic polypropylene hydroperoxide by mutual irradiation method in an aqueous medium. Polypropylene hydroperoxide has been prepared by irradiating recrystallized polypropylene beads from a Co60 source in the presence of air. The resulting polypropylene hydroperoxide beads have been used as the backbone polymer and grafting of 4-vinyl pyridine has been studied as a function of various reaction parameters. Optimum conditions for maximum percentage of grafting have been evaluated. Rate of grafting (Rg) has been determined as a function of preirradiation dose and initial monomer concentration. Water has been found to affect percentage of grafting. The graft copolymers have been characterized by spectroscopic method and isolation of the grafted poly(4-VP) from the graft copolymer. A plausible mechanism is proposed to explain the mutual grafting of 4-vinyl pyridine onto polypropylene hydroperoxide. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
A solid state grafting copolymerization of acrylamide (AM) onto poly(vinyl alcohol) (PVA) was conducted with ammonium persulfate and sodium bisulfite redox system as initiators. Before the reaction the PVA powder and required amount of AM were mixed evenly, and sprayed with water to swell the PVA powder and to dissolve AM. Then the swollen PVA powder was sprayed with the redox solution, and the reaction temperature was controlled at a temperature between 30°C and 80°C for 120 min. The grafting percentage and efficiency were determined as functions of monomer/PVA ratio, initiator concentration and reaction temperature. The structure and performance of the graft copolymers were confirmed by FTIR‐ATR, XRD, 13C NMR, and thermogravimetric analysis, together with mechanical property and apparent viscosity measurements. It has been confirmed that grafting copolymerization of AM onto PVA initiated by this redox system occurred with higher grafting percentage and efficiency in the solid state. The thermal stability and water‐solubility of grafted PVA were found to be better than those of unmodified PVA. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39938.  相似文献   

4.
The graft copolymerization of styrene (st) and methacrylonitrile (MAN) onto Tefzel film in aqueous media by the preirradiation method has been studied. In order to follow the effect of preswelling of the backbone polymer, grafting was attempted onto preirradiated Tefzel film and monomer preswollen, preirradiated Tefzel film. Optimum conditions pertaining to maximum percentage of grafting of st and MAN have been evaluated. Grafting onto preswollen, preirradiated Tefzel film displayed better results. The effect of different alcohols of increasing chain length on the percentage of grafting of st and MAN was also studied. Graft copolymerization of st showed an increase, while grafting with MAN exhibited a decrease, in the percentage of grafting in the presence of alcohols as compared to that obtained in the aqueous medium. Characterization of the graft copolymers was made by IR and thermogravimetric studies. Tefzel‐graft‐polystyrene showed improved thermal stability while the MAN grafted onto preswollen, preirradiated Tefzel film produced graft copolymer with poor thermal stability. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
Preparation and Characterization of Starch-g-Polymethacrylamide Copolymers   总被引:2,自引:0,他引:2  
In this article, methacrylamide was successfully grafted onto starch using benzoyl peroxide as a radical initiator in aqueous medium. The extent of grafting was found to be affected by the initiator, monomer, starch concentration, and temperature. The optimum initiator concentration is 2.0×10−3 mol/L. The graft yield was observed to increase with the monomer concentration and temperature. No optimum values for the monomer concentration and temperature were found. The overall activation energy for graft copolymerization was obtained. The grafted starches were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). TGA thermograms showed that the thermal stability of starch increased as a result of grafting. SEM micrographs showed that the granular structure of starch was not maintained after graft copolymerization. The water uptake and moisture retainment values of starch graft copolymers were investigated.  相似文献   

6.
Characteristic behavior in the graft copolymerization of acrylamide/N-(1,1-dimethyl-3-oxybutyl)acrylamide (AM/DAAM) comonomers onto dextran by Ce(IV)-induced initiation was investigated. From a preliminary study, it was found that ceric ammonium nitrate polymerized AM/DAAM comonomer mixtures and diacetone acrylamide, but not acrylamide alone in the aqueous solution. The effect of grafting conditions on the graft copolymerization product was studied with the aid of aqueous size exclusion chromatography and the anthrone reagent. The selectivity of formation of the graft copolymer over random copolymer was found to increase as the reaction temperature and AM/DAAM ratio increased and as both the Ce(IV)/Dextran molar ratio and HNO3 concentration decreased. After establishing optimum grafting conditions, graft copolymer samples were prepared, and their aqueous solution behavior studied as functions of structure, temperature, and added salts.  相似文献   

7.
Summary To graft acylamide (AM) onto the backbone of natural water-soluble polysaccharide of P.psyllium mucilage (PSY), ceric ion initiated solution polymerization technique was reported for the first time. This technique was found to be beneficial. The effects of varying concentration of AM and ceric ammonium nitrate (CAN) on graft copolymerization have been studied. The prepared copolymers were characterized by FTIR. The % grafting and the intrinsic viscosity of this water-soluble copolymer were found to be affected by the concentration of AM and CAN in the reaction mixture. Received: 29 March 2002 / Revised version: 7 May 2002 / Accepted: 22 May 2002  相似文献   

8.
Poly(ester urethane) (PU) with functional groups (amide, hydroxyl, carboxyl) on surfaces were prepared by grafting monomers such as acrylamide (AAm), hydroxyethyl acrylate (HEA), and methacrylic acid (MAA) onto the PU membranes. Grafting copolymerization was carried out by the combined use of photooxidization and UV irradiation grafting. The PU membrane was photooxidized in hydrogen peroxide solution under UV light to yield hydroperoxide groups on the surface and then irradiation grafting with monomer in water. The ATR‐FTIR spectrum, X‐ray photoelectron spectroscopy characterized the grafted copolymers and verified the occurrence of grafting copolymerization. The results showed that the content of hydroperoxide groups yielded was dependent on the photooxidization time and reached maximum at about 8 h. Grafting copolymerization was enhanced when irradiating by UV light. The degree of grafting was increased with the increase of content of hydroperoxide groups, irradiation time, and monomer concentration. The grafting copolymerization was enhanced when an appropriate amount of ferrous ions was added. After grafting, the wettability of PU and the water absorption percentage increased with the degree of grafting. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2505–2512, 2000  相似文献   

9.
The graft copolymerization of methyl methacrylate (MMA) onto chitosan was tried via a new protection‐graft‐deprotection procedure. Because the intermediate phthaloylchitosan was soluble in organic solvents, the graft copolymerization was carried out in a homogeneous system. Grafting was initiated by γ‐irradiation. The graft percentage extent was dependent on the irradiation dose and the concentration of MMA monomer, and copolymers with grafting above 100 % were readily prepared. The graft copolymers exhibited a high affinity not only for aqueous acid but also for some organic solvents. Differential scanning calorimetry measurements revealed the presence of a glass transition phenomenon, which could be ascribed to the poly(methyl methacrylate) side‐chains. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
Homogeneous graft copolymerization of dichlorodimethylsilane (DCDMS) onto cellulose acetate (CA) was carried out in acetone. The weight conversion, grafting percentage and grafting efficiency were determined as functions of the polymerization temperature and the concentrations of monomer and cellulose acetate. The IR and NMR data of the graft copolymers showed peaks characteristic of grafted chains. The order of the solvents used for increasing the grafting yield values was found as follows: cyclohexanone > ethyl acetate > dioxane, which is in accordance with their dielectric constants. Cellulose acetate previously oxidized by treatment with a mixture of oxalic acid and potassium dichromate when grafted with DCDMS gave low grafting yield values. The rate of copolymerization grafting of DCDMS onto CA was determined (Rp = 1.1 %min−1). The activation energy of the reaction between DCDMS and CA was calculated (1.32 kJ mol−1, 0.32 kcal mol−1). The mechanism of graft copolymerization of DCDMS onto CA is discussed.  相似文献   

11.
林兆云  张贤贤  李友明  万小芳  刘军 《精细化工》2012,29(7):701-704,728
以硝酸铈铵/硝酸为引发剂,在反相乳液中引发瓜尔胶/丙烯酰胺的接枝共聚反应。考察了m(丙烯酰胺AM)∶m(瓜尔胶GG)、引发剂浓度、反应温度和反应时间对接枝聚合的影响。结果表明,当m(AM)∶m(GG)=3∶2,引发剂浓度为4 mmol/L,反应时间为4 h,反应温度为45℃时,接枝共聚反应的接枝率和单体转化率分别为147.05%和87.7%。接枝共聚物的最大相对分子质量(简称分子量,下同)可达到1.73×106。红外光谱(IR)分析证明了AM确实接枝到GG分子链上,热重分析(TGA)显示接枝的AM单体并未影响GG的热稳定性。  相似文献   

12.
Graft copolymerization of methacrylonitrile (MAN) and its binary mixture with 4-vinylpyridine (4-VP) onto isotactic polypropylene (IPP) fiber has been studied in aqueous medium by the preirradiation method. Optimum conditions for obtaining the maximum percentage of grafting have been evaluated. Rate of grafting (Rg) has been determined as a function of total initial monomer concentration. The graft copolymers are characterized by IR spectroscopy, by thermogravimetric analysis, and by isolating the polymer from the graft copolymer. The effect of MAN, an acceptor monomer, on percentage of grafting of 4-VP, a donor monomer, has been discussed in the light of the mechanism proposed for grafting by the radiochemical method. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
A redox initiation system based on potassium persulfate/acetone sodium bisulphite (KPS/ASBS) was developed to initiate the graft copolymerization of vinyl acetate (VAc) monomer onto corn starch in aqueous solution. The grafting reaction was studied with respect to grafting yield (GY), grafting efficiency (GE) and total conversion (TC) and results obtained were compared with those a well-established redox initiation system namely potassium persulfate/sodium bisulphite (KPS/SBS). The effect of reaction variables such as redox initiator concentration, liquor ratio, reaction time and temperature as well as VAc concentration were investigated. The GY, GE and TC increased significantly with increase of the redox initiation concentration up to 8/16 mmol/l irrespective of the initiation system used. Moreover, optimal grafting was obtained at 60 C for KPS/ASBS redox system and 70 C for KPS/SBS redox system. Saponification of poly (vinyl acetate)-starch graft copolymers were effected using NaOH in three different bath media (n-hexane, acetone or methanol) to convert starch-g-poly(vinyl acetate) to starch-g-poly(vinyl alcohol). Higher extent of solubility in hot water of the saponified form was achieved by using a bath containing n-hexane/sodium hydroxide; however, increasing the graft yield higher than 26.3% decreases the solubility. The structures and thermal stability of starch, grafted starch copolymer and saponified grafted starch copolymer were characterized by infrared spectroscopy and thermogravimetric analysis. Moreover, the rheological behavior as well as sizing performance of the saponified grafted starch copolymers were evaluated and compared with the native starch and commercial polyvinyl alcohol.  相似文献   

14.
采用反相悬浮法制备了颗粒状接枝共聚物———氯化聚乙烯接枝丙烯酸(CPE-g-AA)、氯化聚乙烯接枝丙烯酰胺(CPE-g-AM)和氯化聚乙烯接枝混合单体丙烯酸、丙烯酰胺[CPE-g-(AA-AM)],并通过热压法制得接枝共聚物片材。考察了颗粒状接枝共聚物和接枝共聚物片材的吸水膨胀性能。结果表明,接枝共聚物的吸水性能与接枝单体的种类及其接枝率有关,相同接枝率的CPE-g-AA的吸水量比CPE-g-AM的大。当混和单体丙烯酸/丙烯酰胺的质量比为2/2时,所得接枝共聚物的抗盐性能最好。接枝共聚物片材可反复吸水膨胀,接枝率为62%的CPE-g-AA片材的二次吸水达到平衡时的吸水率和膨胀率分别为120%和41%。通过测定接枝共聚物的接触角表明,CPE-g-AA对水的润湿作用比CPE-g-AM明显。  相似文献   

15.
Summary Two-stage seeded emulsion copolymerization of butyl acrylate with tert-butyl 3-isopropenylcumylperoxide (D120) was performed at 70°C . Copolymer latex with 0.2μm of particle size was obtained. Emulsion graft polymerization of styrene and acrylonitrile onto the copolymer of butyl acrylate was initiated by peroxy bonds in the D120 units of the backbone chains at 120°C . Graft copolymers with higher grafting ratio were derived. It was found that the grafting ratio tends to increase with the increasing D120 in feed of copolymerization with butyl acrylate. The graft copolymers were blended with SAN resin, and a kind of AAS resin was obtained. Both elongation at break and Izod impact strength of the AAS resin reached maximum at grafting ratio of 0.25, which were comparable with the values of ABS resin for general purpose. A method to improve the grafting efficiency on the saturated polyacrylate elastomer rubber was developed. Received: 6 March 2002 / Revised version: 8 May 2002 / Accepted: 13 May 2002  相似文献   

16.
Radiation graft copolymerization of comonomer mixtures of acrylic acid (AAc) and styrene (S) onto polypropylene (PP) films by the mutual method has been investigated. The effect of different factors that may affect the grafting yield, such as inhibitor concentration (Mohr’s salt), solvent composition (MeOH and H2O), radiation dose and dose rate, was studied. It was found that Mohr’s salt was very effective when the content of AAc in the comonomer mixtures was low. However, the addition of 1·25wt% of Mohr’s salt reduced homopolymer formation and enhanced the grafting process. Graft copolymerization in the presence of a solvent mixture composed of methanol and water was found to afford a higher grafting yield than in pure methanol, regardless of the composition of the comonomer mixture used. However, the highest degree of grafting was obtained at a solvent composition of 20% H2O: 80% MeOH and a comonomer mixture of 20% AAc: 80% S. An attempt was made to determine each PAAc and PS fraction by different methods in the graft copolymer obtained. Elemental analysis indicated that the PAAc fraction with respect to PS in the graft copolymer decreased with increasing AAc ratio in the comonomer feed solution. The rough assessment of these fractions by IR spectroscopy showed similar trends. The reactivity ratios of AAc and S monomers determined in the present graft copolymerization system were found to be 0·45 and 1·3, respectively. © of SCI.  相似文献   

17.
Graft copolymerization of spiropyran-containing methacrylate (SPMMA) and acrylamide (AM) onto the surface of a porous polymer membrane was carried out. The permeability of the graft membrane varied with ultraviolet (UV) - or visible-light irradiation. It was found that the change by UV-light irradiation of the permeability of the H2O/CH3OH mixture through the SPMMA/AM-grafted membrane is related to the change by UV-light irradiation of the solubility, i.e., the chain extension, of the graft copolymer in the mixed solvent. When the free SPMMA/AM copolymer becomes insoluble in the H2O/CH3OH mixture by UV-light irradiation, the permeability of the H2O/CH3OH mixture through the SPMMA/AM-grafted membrane is increased. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
The basic method for synthesizing syndiotactic polystyrene‐g‐polybutadiene graft copolymers was investigated. First, the syndiotactic polystyrene copolymer, poly(styrene‐co‐4‐methylstyrene), was prepared by the copolymerization of styrene and 4‐methylstyrene monomer with a trichloro(pentamethyl cyclopentadienyl) titanium(IV)/modified methylaluminoxane system as a metallocene catalyst at 50°C. Then, the polymerization proceeded in an argon atmosphere at the ambient pressure, and after purification by extraction, the copolymer structure was confirmed with 1H‐NMR. Lastly, the copolymer was grafted with polybutadiene (a ready‐made commercialized unsaturated elastomer) by anionic grafting reactions with a metallation reagent. In this step, poly(styrene‐co‐4‐methylstyrene) was deprotonated at the methyl group of 4‐methylstyrene by butyl lithium and further reacted with polybutadiene to graft polybutadiene onto the deprotonated methyl of the poly(styrene‐co‐4‐methylstyrene) backbone. After purification of the graft copolymer by Soxhlet extraction, the grafting reaction copolymer structure was confirmed with 1H‐NMR. These graft copolymers showed high melting temperatures (240–250°C) and were different from normal anionic styrene–butadiene copolymers because of the presence of crystalline syndiotactic polystyrene segments. Usually, highly syndiotactic polystyrene has a glass‐transition temperature of 100°C and behaves like a glassy polymer (possessing brittle mechanical properties) at room temperature. Thus, the graft copolymer can be used as a compatibilizer in syndiotactic polystyrene blends to modify the mechanical properties to compensate for the glassy properties of pure syndiotactic polystyrene at room temperature. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Rayon–styrene graft copolymers were prepared by the direct radiation method, with the use of the preswelling technique, by irradiation with γ-rays from 60Co. The grafting was carried out in bulk styrene and in styrene–solvent mixtures, such as styrene–methanol and styrene–acetone, to study their effect on the graft copolymerization reaction and the structure of the resulting graft copolymer. The effects of carbon tetrachloride, a chain-transfer agent, was also investigated. Three different types of rayon yarn were used; Fortisan, a modifier-type high wet-modulus rayon, and a high-tenacity tire yarn, in order to study the effect of rayon microstructure on the grafting reaction. The molecular structure of the rayon–styrene graft copolymers was studied by hydrolyzing away the cellulose backbone and measuring the molecular weights of the grafted polystyrene branches. For grafting in bulk styrene, the molecular weights of the grafted polystyrene ranged from 400,000 to 1,000,000, while those of the polystyrene homopolymer formed in the outside solution were of the order of 30,000–50,000. The molecular weights of the grafted polystyrene branches tended to increase with per cent grafting in the graft copolymer. For grafting in styrene–methanol and styrene–acetone mixtures, the molecular weights of the polystyrene branches decreased with increasing solvent content. The addition of carbon tetrachloride to bulk styrene resulted in a sharp decrease in the molecular weights of the grafted branches. The grafting frequency or number of polystyrene branches per cellulose chain was calculated from the per cent grafting and the molecular weights of the polystyrene branches. The morphology of the rayon–styrene graft copolymers and some of their physical properties are discussed.  相似文献   

20.
Graft copolymerization of acrylamide (AM) onto cotton–cellulose has been studied using a new class of acidic peroxo-salt “potassium monopersulfate” as initiator catalyzed by Co(II). It is observed that the graft yield is influenced by the reaction time, temperature, and concentrations of the monomer, catalyst, initiator, at fixed weight of the polymer. Maximum graft yield (30.8%) is obtained at 40°C under nitrogen atmosphere for the concentrations of monomer 1.2M; initiator 4.83 × 10?3M; Co(II) 5 × 10?4M for 4 h of reaction time. The graft copolymers after proper purification have been subjected to IR analysis, testing of their water-retention properties, rot resistance, tensile properties, and behavior towards acids and alkalies. The results of such analysis are compared with the base. Suitable mechanism for the graft copolymerization is suggested and grafting rate has been evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号