首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 3 毫秒
1.
F.E. Uilhoorn 《工程优选》2016,48(10):1693-1706
In this article, the stochastic modelling approach proposed by Box and Jenkins is treated as a mixed-integer nonlinear programming (MINLP) problem solved with a mesh adaptive direct search and a real-coded genetic class of algorithms. The aim is to estimate the real-valued parameters and non-negative integer, correlated structure of stationary autoregressive moving average (ARMA) processes. The maximum likelihood function of the stationary ARMA process is embedded in Akaike's information criterion and the Bayesian information criterion, whereas the estimation procedure is based on Kalman filter recursions. The constraints imposed on the objective function enforce stability and invertibility. The best ARMA model is regarded as the global minimum of the non-convex MINLP problem. The robustness and computational performance of the MINLP solvers are compared with brute-force enumeration. Numerical experiments are done for existing time series and one new data set.  相似文献   

2.
An interval-parameter fuzzy robust programming (IFRP) method is developed for the assessment of filter allocation and replacement strategies in a fluid power system (FPS) under uncertainty. The developed IFRP can effectively handle the uncertainties expressed as fuzzy sets, interval values, and their combinations, which exist in contaminant ingression/generation of the system and contaminant-holding capacity of filter without making assumptions on their probabilistic distributions. The fuzzy decision space can be delimited into a more robust one with the uncertainties being specified through dimensional enlargement of the original fuzzy constraints, leading to enhanced robustness for the optimization process. Results indicate that the developed IFRP can not only help decision-maker to identify optimal filter allocation and replacement strategies to control the contamination level of FPS with a minimized system-cost and system-failure risk under multiple uncertainties, but also mitigate uncertainties through abating interval widths of the replacement periods and service life under different contamination ingression/generation rates.  相似文献   

3.
The focus of this paper is on the use of the Manufacturing System Design Decomposition (MSDD) to make effective cost and production system design decisions. A comparative study is conducted to illustrate how and why the total cost is reduced when the functional requirements defined by the MSDD are achieved. The ultimate goal of this research was to advance manufacturing and production system development to being guided by engineering science and design rather than the common practice of duplicating another person’s or entity’s notion of the best physical implementation.  相似文献   

4.
We consider the problem of optimizing a non‐linear aeroelastic system in steady‐state conditions, where the structure is represented by a detailed finite element model, and the aerodynamic loads are predicted by the discretization of the non‐linear Euler equations. We present a solution method for this problem that is based on the three‐field formulation of fluid–structure interaction problems, and the adjoint approach for coupled sensitivity analysis. We discuss the computational complexity of the proposed solution method, describe its implementation on parallel processors, and illustrate its computational efficiency with the aeroelastic optimization of various wings. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
One-piece flow is a design rule that entails production in manufacturing cells on a ‘make one, check one, and move-on one’ basis (Black, J.T., 2007. Design rules for implementing Toyota Production System. International Journal of Production Research, 45 (16), 3639–3664), which reduces manufacturing lead time significantly. This paper proposes a sequential methodology comprised of a mathematical model and a heuristic approach (HA) for the design of a hybrid cellular manufacturing system (HMS), to facilitate one-piece flow practice. The mathematical model is employed in the cases of small- and medium-sized problems, and it attempts to minimise the total number of exceptional operations, while considering machine capacities and alternative machines. The machine-part matrix achieved by the mathematical model is input into the flow line design stage of the HA, where backflow within the cells is eliminated. However, for industrial problems, the proposed HA is utilised. After the formation of the cells by clustering, the HA attempts to eliminate exceptional operations of a given cellular configuration together with a functional structure by employing alternative machines, based on the decision rules developed. Later, unidirectional flow within the cells is achieved and the capacity and budget constraints are satisfied. A medium-sized problem is solved by using both of the approaches, namely, the model integrated with the flow-line design stage of the HA and the complete HA. The results are discussed and the limitations are explained.  相似文献   

6.
This paper presents a hybrid methodology for conceptual design of large systems with the goal of enhancing system reliability. It integrates the features of several design methodologies and maintenance planning concepts with the traditional reliability analysis. The methodology considers the temporal quality characteristic “reliability” as the main objective and determines the optimal system design. Key ideas from several design methodologies, namely axiomatic design, robust design, and the theory of inventive problem solving, have been integrated with the functional prioritization framework provided by reliability-centered maintenance. A case study of the conceptual design of a multiphase pumping station for crude oil production is presented. The methodology provides a new design tool for determining system configurations with enhanced reliability taking into account maintenance resources and variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号