共查询到20条相似文献,搜索用时 15 毫秒
1.
Tanzina Huq Avik Khan Nazia Noor M. Saha Mubarak A. Khan 《Polymer-Plastics Technology and Engineering》2013,52(4):407-413
The aim of the research was to study the effect of LLDPE incorporation in the jute fiber-reinforced PET composites (50% fiber by wt). The effect of LLDPE incorporation into PET was investigated by measuring the mechanical properties of the LLDPE blended jute fiber-reinforced PET composites. LLDPE was blended (20-80% by wt) with PET and the thin films were made by compression molding. Water uptake of the composites was also investigated. Degradation of all the composites was carried out in soil medium. 相似文献
2.
Mubarak A. Khan Tuhidul Islam M. Arifur Rahman Jahid M. M. Islam Ruhul A. Khan M. A. Gafur 《Polymer-Plastics Technology and Engineering》2013,52(7):742-747
Jute fabrics/gelatin biocomposites were fabricated using compression molding. The fiber content in the composite varied from 20–60 wt%. Composites were subjected to mechanical, thermal, water uptake and scanning electron microscopic (SEM) analysis. Composite contained 50 wt% jute showed the best mechanical properties. Tensile strength, tensile modulus, bending strength, bending modulus and impact strength of the 50% jute content composites were found to be 85 MPa, 1.25 GPa, 140 MPa and 9 GPa and 9.5 kJ/m2, respectively. Water uptake properties at room temperature were evaluated and found that the composites had lower water uptake compared to virgin matrix. 相似文献
3.
Haydar U. Zaman Mubarak A. Khan Ruhul A. Khan 《Polymer-Plastics Technology and Engineering》2013,52(7):651-659
Jute fabrics-reinforced polymer composites were prepared with different formulations using oligomer (M-1200), methanol and benzoyl peroxide. Fiber content in the composites was optimized and 55% jute content at oligomer: methanol: benzyl peroxide = 75:24.5:0.5 (w/w) ratios showed better mechanical properties. Jute fabrics were treated with potassium permanganate (KMnO4) solution of different concentrations for different soaking times. Optimized jute fabrics were soaked in the optimized formulation (F3) and cured under UV radiation at different intensities and measured their mechanical properties. Scanning electron microscopy (SEM), water uptake and soil degradation test of the treated and untreated composite samples were performed. 相似文献
4.
Tanzina Huq Avik Khan Nazia Noor M. Saha Mubarak A. Khan 《Polymer-Plastics Technology and Engineering》2013,52(11):1128-1135
Jute fiber mat (hessian cloth) reinforced PET-based composites (50% fiber by weight) and E-glass fiber matreinforced PET based composites (50% fiber by weight) were fabricated by compression molding and the mechanical properties tensile strength (TS), tensile modulus (TM), elongation at break (%), bending strength (BS), bending modulus (BM), impact strength (IS) and hardness (Shore-A) of the composites were evaluated and compared. The interfacial properties of the both composites were also compared. Water uptake test and soil degradation test were also investigated. 相似文献
5.
Jute-reinforced polyethylene (PE), polypropylene (PP) and mixture of PP/PE composites were prepared. It was found that 90% PP and 10% PE matrices based jute reinforced composites performed the better results. UV radiation at different intensities was applied both on matrices and jute. Mechanical properties of the irradiated jute- and matrices-based composites were found to increase significantly. Optimized jute fabrics were also treated with different concentrations of green dye (0.1–1%, w/w) with 2% K2O8S2 in methanol solution for 2–8 min. A composite made of 0.5% green dye jute (5 min soaking time) and irradiated matrix showed the best mechanical properties. 相似文献
6.
7.
Jute fiber was treated with three different hydroxy benzene diazonium salts in acidic and basic media. The formation of coupling with lignin in the polymer system was observed by the infrared spectra and nitrogen content estimation. The physico-mechanical properties, viz., tensile strength, tenacity, elongation at break, moisture regain, shrinkage, and loss in weight of jute fiber were studied. The tensile strength, tenacity, and moisture regain properties of the treated fiber were found lower in comparison to those of raw (control) fiber. However, higher tensile strength and tenacity of the fiber treated with ortho hydroxy benzene diazonium salts in comparison to fiber treated with meta hydroxy benzene diazonium salts were observed. The tensile strength and tenacity of the fiber treated with meta hydroxy benzene diazonium salts were higher than those of the fiber treated with para hydroxy benzene diazonium salts. The elongation at break of the treated fiber is found greater than that of the raw fiber. The fiber treated in basic media shows higher tensile strength than that treated in acidic media. The formation of metallated azo complex compound on jute fiber was observed by infrared spectra. The nature of the shades developed on jute fiber was also reported. 相似文献
8.
Quazi T. H. Shubhra A. K. M. M. Alam M. A. Khan Dipti Saha Jahangir A. Khan 《Polymer-Plastics Technology and Engineering》2013,52(10):983-990
There is a growing interest in the use of composite materials. Silk fiber/gelatin biocomposites were fabricated using compression molding. The fiber content in the composite varied from 10–30 wt%. Composite containing 30 wt% silk showed the best mechanical properties. Tensile strength, tensile modulus, bending strength, bending modulus and impact strength, hardness of the 30% silk content composites were found 54 MPa, 0.95 GPa, 75 MPa and 0.43 GPa and 5.4 kJ/m2, 95.5 Shore A, respectively. Water uptake properties at room temperature, accelerated weathering aging, irradiation, thermomechanical analysis, and degradation in soil were carried out in this experiment. 相似文献
9.
10.
采用新的混杂复合工艺,将不同形式的玻璃纤维、剑麻纤维、玻璃纤维毡与黄麻纤维毡用不同的混杂方式(Ⅰ层内,Ⅱ夹芯)混杂增强聚丙烯.研究结果表明,在强度和刚性得到明显改善的同时,冲击韧性得到了大幅度的提升,而且短纤维层内混杂和连续纤维夹芯混杂呈现出不同的特点,不同的铺层设计导致力学性能有明显差异.通过对材料断面的电镜分析看出,用短玻璃纤维和麻纤维毡混杂增强聚丙烯时,冲击破坏过程以界面脱黏为主,而用玻璃纤维毡和麻纤维毡混杂增强时,破坏断面中玻璃纤维存在大量的拔出现象.利用混杂效应理论公式计算了混杂效应系数,并和实测值进行了比较. 相似文献
11.
Ruhul A. Khan Haydar U. Zaman Mubarak A. Khan Farah Nigar Towhidul Islam Rafiqul Islam 《Polymer-Plastics Technology and Engineering》2013,52(7):707-712
Jute fabrics-reinforced linear low density polyethylene (LLDPE) matrix composites (50 wt% fiber) were prepared by compression molding and mechanical properties were studied. Polyvinyl chloride (PVC) matrix was incorporated instead of LLDPE in the jute based composites and their mechanical properties were investigated and compared with the control composites. It was found that with the increase of PVC in the LLDPE based composites, the mechanical properties were found to improve significantly. Degradation tests of the composites for upto 24 weeks were performed in soil medium. Water uptake and Thermo-mechanical properties of the composites were also studied. 相似文献
12.
用溶液接枝聚合的方法在线型低密度聚乙烯(LLDPE)上接枝聚合极性单体甲基丙烯酸甲酯(MMA)制备LLDPE-g-PMMA,研究了反应时间、单体用量和引发剂用量对接枝反应的影响。结果表明,随着引发剂和单体量的增加,聚合物的接枝率增加,当引发剂质量分数为0.48%,单体比率为150%时,接枝率将达到26.1%。利用红外光谱(FTIR)、核磁共振碳波谱仪(13C-NMR)对其进行结构表征,证明PMMA分子链被接枝聚合到LLDPE上。使用X射线衍射仪(XRD)、差示扫描量热仪(DSC)对接枝聚合物的结晶性能进行了分析,发现接枝聚合没有改变晶型,但结晶焓由61.39 J/g降低到47.18 J/g。 相似文献
13.
14.
《国际聚合物材料杂志》2012,61(4):461-475
Abstract Natural rubber (NR)/Linear low density polyethylene (LLDPE) blends were prepared using an internal mixer at 150°C and a rotor speed of 55 rpm. The tensile strength, tensile modulus and hardness increase with increasing LLDPE content whereas elongation at break and mass swell show decreasing trend. With 30/70 (W/W) NR/LLDPE blends, the increasing white rice husk ash (WRHA) loading also increases the tensile modulus and hardness but reduced the tensile strength, elongation at break, and mass swell. 相似文献
15.
《Journal of Adhesion Science and Technology》2013,27(8-9):1281-1294
Abstract Bioblends are composites of at least one biodegradable polymer with a non-biodegradable polymer. Successful development of bioblends requires that the biodegradable polymers be compatible with other component biodegradable/synthetic (non-biodegradable) polymers. Bioblends from LLDPE and gelatin were prepared by extrusion and hydraulic heat press technique. The gelatin content in the bioblends was varied from 5 to 20 wt%. Various physico-mechanical properties such as tensile, bending, impact strength (IS), thermal ageing and soil degradation properties of the LLDPE/gelatin bioblends with different gelatin contents were evaluated. The effect of thermal ageing on mechanical properties was studied. The mechanical properties such as tensile modulus (TM), bending strength (BS), bending modulus (BM) were found to increase with increasing gelatin content up to 20 wt%, however tensile strength (TS) and elongation at break (%E b) were decreased with increasing gelatin content. Impact strength value increased with increasing gelatin content up to 10 wt% and then decreased slightly with increasing gelatin content. The blend containing 20 wt% gelatin showed relatively better mechanical properties than other blends. The values of TS, TM,%E b, BS, BM and IS for the bioblend with 20 wt% gelatin content are 5.9MPa, 206.3MPa, 242.6%, 12.1MPa, 8 MPa and 13.7 J/cm2, respectively. Water uptake increases with increasing soaking time in water and weight loss due to soil burial also increases with increasing gelatin content in the blends but both are significantly lower than that of pure gelatin sheet. Weight loss values after thermal ageing increase with time, temperature and increasing gelatin content in the blend but are much lower than pure gelatin. Mechanical properties such as TS, TM are increased and %E b is decreased after thermal ageing at 60°C for 30 min. Consequently, among all of the bioblends prepared in this work the blend having 20% gelatin content yields properties such that it can be used as a semi-biodegradable material. 相似文献
16.
17.
Haydar U. Zaman A. H. Khan M. A. Hossain Ruhul A. Khan 《Polymer-Plastics Technology and Engineering》2013,52(7):760-766
Jute fabrics reinforced polyethylene (PE), polypropylene (PP) and mixture of PP+PE matrices based composites (50 wt% fiber) were prepared by compression molding. It was found that the mixture of 80% PP + 20% PE hybrid matrices based jute fabrics reinforced composites performed the best results. Gamma radiation (250–1000 krad) was applied on PP, PE and jute fabrics then composites were fabricated. The mechanical properties of the irradiated composites (500 krad) were found to increase significantly compared to that of the non irradiated composites. Electrical properties like dielectric constant, loss tangent and conductivity with temperature variation of the composites were studied. 相似文献
18.
Haydaruzzaman A. H. Khan M. A. Hossain Ruhul A. Khan M. A. Hakim 《Polymer-Plastics Technology and Engineering》2013,52(8):757-765
Hessian cloth (jute fabrics) reinforced poly(propylene) (PP) composites (45 wt% fiber) were prepared by compression molding and the mechanical properties were evaluated. Jute fabrics and PP sheets were treated with UV radiation at different intensities and then composites were fabricated. It was found that mechanical properties of the irradiated jute and irradiated PP-based composites were found to increase significantly compared to that of the untreated counterparts. Irradiated jute fabrics were also treated with aqueous starch solution (1–5%, w/w) for 2–10 min. Composites made of 3% starch-treated jute fabrics (5 min soaking time) and irradiated PP showed the best mechanical properties. Tensile strength, bending strength, tensile modulus, bending modulus and impact strength of the composites were found to improve 31, 41, 42, 46 and 84% higher over untreated composites. Water uptake, thermal degradation and dielectric properties of the resulting composites were also performed. 相似文献
19.
《国际聚合物材料杂志》2012,61(5):303-315
Jute fabric (hessian cloth) reinforced low-density polyethylene (LLDPE) composites (40 wt%) and solid natural rubber-(NR) based composites (40 wt%) were fabricated by compression molding. Tensile strength (TS), tensile modulus (TM) and percentage elongation at break (Eb) of jute/LLDPE composites were found to be 29, 680 MPa and 20%, and for jute/NR-based composites were also found to be 15, 122 MPa and 94%, respectively. Interfacial shear strength (IFSS) of the jute/LLDPE and jute/NR systems was investigated by using the single fiber fragmentation test (SFFT). Scanning electron microscopy (SEM) and aqueous degradation tests were also performed. 相似文献
20.
The depolarization current spectra for polyvinyledenefluoride (PVDF), poly methylmethacrylate (PMMA), and their double-layered samples have been recorded under different polarizing conditions. When double-layered sample is polarized at 323 K with high field, a new TSDC peak is observed that is inherent in PMMA and PVDF when considered individually. This is because of the trapping charge carriers at the PVDF–PMMA interface. The space charge peak is shifted toward the lower temperature side for the PMMA and PVDF samples; however, this trend of peak shifting was not found for double-layered samples. The trapping of charge carriers in the metal polymer interface is responsible for space charge peak. This trapping of charge carriers in polymer-polymer interface is interesting, and this process is responsible for interfacial polarization in double-layered samples. 相似文献