首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glass-PA (EC-G-PA), Jute-PA (EC-J-PA), Glass-Jute-Glass (EC-GJG-PA), Jute-Glass-Jute (EC-JGJ-PA) composites of epoxy resin of bisphenol-C (EBC) have been prepared using a hand lay-up technique at 150°C under 27.58 MPa pressure for 6 h by using phthalic anhydride as a curing agent. EC-G-PA, EC-J-PA EC-GJG-PA and EC-JGJ-PA Possess 34, 41, 27 and 21 MPa tensile strength; 34, 27, 19 and 22 MPa flexural strength; 1.9, 1.0, 1.6 and 1.3 kV/mm electric strength and 4.2 × 1013, 1.2 × 109, 8.7 × 1011 and 4.0 × 1011 ohm.cm volume resistivity. Hydrolytic stability of the composites was tested against water, 10% aq. HCl and NaCl solutions at 35°C and also in boiling water. The percent water uptake, equilibrium time and diffusivity of the composites have been determined and discussed their possible applications.  相似文献   

2.
Epoxy resin of bisphenol-C-formaldehyde (EBCF) was synthesized and its structure was confirmed by FTIR and 1HNMR techniques. Untreated jute and a 4 % sodium hydroxide-treated jute composites of EBCF, araldites (GY508 and GY6010) and their hybrid composites were fabricated by hand layup technique followed by compression-molding technique. Mechanical, electrical and water absorption behavior of the composites was studied by standard test methods. The composites showed good mechanical and electrical properties, excellent hydrolytic stability and almost identical water absorption tendency. To some extent, alkali-treated jute composites displayed improved mechanical properties and water absorption tendency. EBCF-based jute and hybrid composites showed comparable mechanical and electrical properties and water absorption behavior with araldite-based composites. Among jute–EBCF, jute–araldite and their hybrid composites, J–EBCF showed the highest impact strength (26 kg m?2), Barcol hardness (34), volume resistivity (2.7 × 10?11 Ω cm) and diffusivity (7.19 × 10?13 m2 s?2). J–GY-1 showed the highest tensile strength (43.7 MPa), flexural modulus (4.26 GPa), % equilibrium water absorption (19.36 %) and equilibrium water absorption time (480 h). Good mechanical and electrical properties and excellent hydrolytic stability of both types of the composites suggested their usefulness for low load-bearing housing, and electrical and marine applications. Thus, EBCF has found its commercial importance as that of the commercial araldite resins.  相似文献   

3.
Glass-jute (treated and untreated) composites of mixed matrix materials [epoxy resin of bisphenol-C (EBC) and bisphenol-C-formaldehyde (BCF) of 50 wt.% of glass-jute fibers] have been prepared by hand layup technique at 150°C under 7.6 MPa pressure for 2 h. The hydrophilic character of the jute fibers has been reduced by acrylation of alkali-treated fibers with acrylic acid. Tensile strength increased from 87 MPa to 112 MPa (28.73%) and flexural strength increased from 66 MPa to 89 MPa (34.84%) on alkali treatment and acrylation. Similarly, electric strength increased from 2.71 to 3.89 kV/mm (43.54%) and volume resistivity increased from 1.23 × 1012 to 1.77 × 1012 Ω cm (143.90%). The edges of the 5 cm × 5 cm specimens were sealed with matrix material and subjected to distilled water and 10% each of aq. HCl and aq. NaCl solutions at room temperature for a water uptake study. The equilibrium water uptake was reduced drastically from 12.07–7.69% to 6.17–3.39% on acrylation. Similarly, diffusivity was also found to be reduced from 1.99–0.99% to 0.96–0.45%. Drastic reductions in water uptake and diffusivity are due to the replacement of hydrophobic ester groups. The reduction of water uptake is probably due to weak H-bond formation with ester and CH=CH groups, and π-electrons of benzene rings. No effect of boiling water is observed on the stability of the composite. Saturation time in boiling water was reduced twenty-eight/twenty-one times without any damage to the untreated/treated jute-glass composites, respectively.  相似文献   

4.
Glass-Jute-bisphenol-C-formaldehyde (Glass-Jute-BCF) sandwich composites were prepared by hand lay-up technique at 150°C under 30.4 MPa pressure for 2 h. The resin, glass and jute fiber content in the sandwich composite were 33.3, 10.4 and 56.3 wt%, respectively. 10 prepregs containing 8 inner prepregs of jute mats sandwiched between 2 outer prepregs of glass mats. Glass-Jute-BCF sandwich composite has 23 MPa tensile strength, 119 MPa flexural strength, 1.72 kV/mm electric strength and 1.25 × 1012 ohm cm volume resistivity. Tensile strength and volume resistivity both decreased, while flexural strength and electrical strength both improved upon hybridization. Sandwich composite showed high diffusivity in water, 10% NaCl and 10% HCl solutions as compared to Glass-BCF composite. Equilibrium water absorption time is found to be 72 h in all 3 environments. Comparatively low diffusivity is observed due to silane treated glass fibers. No effect of boiling water is observed on stability of composite. Saturation time in boiling water reduced 18 times without any damage to the composite. Glass-Jute-BCF sandwich composite may be useful for low load bearing applications in construction, electrical and electronic industries as well as in harsh acidic and saline environments.  相似文献   

5.
Bisphenol‐C‐epoxy‐toluene diisocyanate polyurethane (PEBCT) has been synthesized and used for the fabrication of jute, jute–rice husk (JRH), and jute–wheat husk (JWH) composites. The composites have been fabricated by hand lay‐up technique under a hydraulic pressure of 30.4 MPa at 135°C for 2.5 h. PEBCT‐J, PEBCT‐JRH, and PEBCT‐JWH possess respectively, tensile strength of 37.4, 9.5, and 14.7 MPa, and flexural strength of 39.6, 12.9, and 21.3 MPa, electric strength of 1.3, 1.8, and 1.9 kV/mm and volume resistivity of 1.40 × 1013, 1.84 × 1013, and 1.91 × 1013 ohm cm. Tensile strength and flexural strength have decreased, while electric strength and volume resistivity are improved upon hybridization. PEBCT‐JWH has better interfacial bond strength and stiffness as compared to PEBCT‐JRH. Moisture uptake behavior of PEBCT‐J in water, 10% HCl and 10% NaCl at room temperature is quite different. Equilibrium moisture content of PEBCT‐J in 10% NaCl (5.5%) is almost half of those in water (11.3%) and 10% HCl (13.6%) environments. Equilibrium time for saline environment is also comparatively low. Equilibrium moisture uptake in boiling water has increased 1.84 times, while equilibrium time has decreased 15.3 times. The composites may be useful for low load bearing in construction industries and for marine applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

6.
Glass and jute (treated and untreated) composites of epoxy resin of 1,1′-bis(3-methyl-4-hydroxy phenyl)cyclohexane(EMC) cured using 20% triethylamine as a hardener (G-EMCT-20 and J-EMCT-20) and EMC- polyurethane of toluene diisocyanate (J-EMCPU and TJ-EMCPU) have been prepared by a hand layup technique under 27.58 MPa pressure and at 150°C for 4 h. G-EMCT-20, J-EMCT-20, J-EMCPU and TJ-EMCPU showed 275, 96.5, 37.3 and 31.5 MPa tensile strength; 351, 84, 10 and 24 MPa flexural strength; 5837, 2758, 1277 and 1619 MPa elastic modulus; 24.6, 7.1, 1.9 and 1.6 kV/mm electric strength; and 1.4 × 1013, 1.1 × 1011, 7.7 × 1010 and 3.6 × 1010 ohm cm volume resistivity, respectively. Fairly good to excellent mechanical and electrical properties of the composites indicated their industrial applications in building and construction, electrical and electronic industries.  相似文献   

7.
Epoxy resin of 9,9′-bis-(3,5-dibromo-4-hydroxyphenyl) anthrone-10 (EANBr, EEW 490) was synthesized and was characterized by IR and 1HNMR . EANBr and EPK3251 cured resin (EANBrC) were characterized by DSC and TGA at 10°Cmin?1 under nitrogen atmosphere. Broad DSC endothermic transitions of EANBr (265.3 °C) and EANBrC (291.4 °C) are due to some physical change and further confirmed by no weight loss in their TG thermograms. EANBr and EANBrC are thermally stable up to 340 °C and 310 °C, respectively. EANBr has followed single step degradation kinetics, while EANBrC has followed two step degradation kinetics. EANBr followed apparently zero order kinetics, while EANBrC followed apparently second order (1.80) and first order (0.89) degradation kinetics, respectively. Ea and A values of EANBrC (299.7 kJmol?1 and 6.32?×?1020 s?1) were found higher than that of EANBr (201 kJmol?1 and 2.45?×?1013 s?1) due to more rigid nature of EANBrC. The ΔS* value of the first step degradation of EANBrC (146.3 JK?1 mol?1) was found much more than that of EANBr (4.6 JK?1 mol?1). Jute – EANBr composite (J-EANBr) was prepared by compression molding technique at 120 °C for 5 h and under 20 Bar pressure. The observed tensile strength, flexural strength, electric strength and volume resistivity of J-EANBr are 24.7 MPa, 19.0 MPa, 1.8 kVmm?1 and 3.5?×?1012 ohm cm, respectively. Water absorption in J-EANBr was carried out at 30 ± 2 °C against distilled water, 10% NaCl, 10% HCl, 10% HNO3, 10% H2SO4, 10% NaOH, and 10% KOH and also in boiling water. The equilibrium time and equilibrium water content for J-EANBr in different environments are 384–432 h; 12.7–15.2%, respectively. The observed equilibrium water content and diffusivity trends of J-EANBr are KOH>H2SO4>HCl>NaOH>H2O>NaCl and H2O>NaCl>NaOH>H2SO4>HCl>KOH, respectively. Good thermo-mechanical, electrical properties and excellent hydrolytic stability of J-EANBr may be useful for high temperature applications in diverse fields.  相似文献   

8.
This work tests the effect on microstructure, flexural strength, flexural moduli, plus the electrical and thermal conductivity of carbon/carbon composites with Mesocarbon Microbeads (MCMBs) content ranging 0–30% by weight during carbonization. These composites were reinforced by oxidative PAN Base fiber felts, and matrix precursor was resol‐type‐phenolic resin. MCMBs with a weight fraction of 0–30% were added to the matrix to elucidate the effect. Liquid‐phase impregnation was applied to reinforce matrix carbon. Cured composites were stabilized at 230°C, then heat‐treated at 400, 600, 800, 900 and 1000°C for carbonization. The measured flexural strength after heat‐treated at 1000°C was 51.20, 49.59, 43.55, and 38.76 MPa for MCMBs with 0, 10, 20, and 30% added to composites; mean flexural moduli were l.73, 1.24, 0.73, and 0.57 MPa, respectively. Adding MCMBs reduced both strength and modulus because of cracks and avoids caused by different shrinkage between resin and MCMBs; adding 30 wt % MCMBs raised thermal conductivity of C/C composites from 1.55 to 1.78 W/mK and reduced electric resistivity from 1.8 × 10?2 to 5.97 × 10?3 Ω cm. effect. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3102–3110, 2006  相似文献   

9.
Polyester polyols of epoxy resins of bisphenol-A and bisphenol-C were synthesized by reacting corresponding 0.02 mol epoxy resin, and 0.04 mol ricinoleic acid by using 1,4-dioxane (30 ml) as a solvent and 0.5 g triethyl amine as a catalyst at reflux temperature for 4–5 hr. Polyurethanes have been synthesized by reacting 0.0029 mol of polyester polyols with 0.004 mol toluene diisocyanate at room temperature and their films were cast from solutions. The formation of polyester polyols and their polyurethanes are supported by IR spectral data (1732.9–1730.0 cm?1 ester and urethane and 3440.8–3419.6 cm?1 OH and NH str). The densities of polyurethane of bisphenol-A (PU-A) and polyurethane of bisphenol-C (PU-C) were determined by a floatation method. The observed densities of PU-A and PU-C are 1.2190 and 1.2308 g/cm3, respectively. Slightly high density of PU-C is due to structural dissimilarity of two bisphenols. The tensile strength, electric strength, and volume resistivity of PU-A and PU-C are 34.7, 18.7 MPa; 80.7, 44.4 kv/mm; and 1.7 × 1015, 2.2 × 1015 ohm cm, respectively. PU-A and PU-C are thermally stable up to about 182–187°C and followed three step degradation. Incorporation of cyclohexyl cardo group in polyurethane chain did not impart any change in thermal properties but it caused drastic reduction in tensile and electric strength due to rigid nature of PU-C chains. PU-C has excellent chemical resistance over PU-A. Both polyurethanes possess good resistance against water, 10% each of aqueous acids (HCl, HNO3, and H2SO4), alkalis (NaOH and KOH) and NaCl. Good thermo-mechanical, excellent electrical properties, and good chemical resistance of polyurethanes signify their usefulness in coating and adhesive, electrical and electronic industries.  相似文献   

10.
Bisphenol‐C‐formaldehyde‐toluene‐2,4‐di isocyanate polyurethane (PU) has been synthesized at room temperature and used for the fabrication of jute and jute–rice husk/wheat husk hybrid composites. PU–jute and PU–jute–RH/WH composites were prepared under pressure of 30.4 MPa at room temperature for 8 h, while PU–jute–RH/WH composites were prepared under same pressure at 110°C for 5 h. PU–jute composite has good tensile strength and flexural strength (50–53 MPa), while PU–jute–RH/WH hybrid composites have moderate tensile strength (9–11 MPa) and a fairly good flexural strength (15–31 MPa). Composites possess 1.1–2.2 kV electric strength and 0.94–1.26 × 1012 ohm cm volume resistivity. Water absorption in PU–jute composite is different in water (9.75%), 10% HCl (12.14%), and 10% NaCl (6.05%). Equilibrium water uptake time in salt environment is observed 96 h, while in pure water and acidic environments it is 192 h. In boiling water equilibrium water content and equilibrium time are found to be 21.7% and 3 h, respectively. Water absorption increased 2.2 times in boiling water, whereas equilibrium time reduced 64 times. Thus, PU–jute composite has excellent hydrolytic stability against boiling water, 10% HCl, and 10% NaCl solutions. Fairly good mechanical and electrical properties and excellent hydrolytic stability of composites signify their usefulness for low cost housing units and in electrical and marine industries. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2363–2370, 2006  相似文献   

11.
Based on our previous work, a new thermosetting resin system, named PCH, has been developed to be used as the matrix of ultrahigh-molecular-weight polyethylene (UHMWPE) fiber composites in order to get improved interface bond and mechanical properties. In this work, UHMWPE fiber/PCH composites with different ratios of PCH/styrene were prepared and the impact resistance, dynamic mechanical properties, and dielectric properties of UHMWPE fiber/PCH composites were investigated. The interlaminar shear failure characteristic of composites was analyzed by introducing a series of energy indexes indicating the energy absorbed in interlaminar shear failure process, which show good correlation with interlaminar shear strength of samples. UHMWPE fiber/PCH composites have excellent impact property, and the impact strength can reach 140.8 kJ/m2 as the ratio of PCH/styrene is 60/40. Dynamic mechanical analysis showed that UHMWPE fiber/PCH composites have high storage moduli (E′) and low dissipation factor (tan δ) and these properties are influenced by the interfacial adhesion. The dielectric property test demonstrated that UHMWPE fiber/PCH composites have low dielectric constant (2.20 < ε′ < 2.55) and dielectric loss tangent (1.50 × 10?3 < tan δ < 1.81 × 10?2) and show good stability in a large range of frequency and temperature.  相似文献   

12.
The effect of two-step and one-step ceramic surface conditioning/priming, and subjecting to exposure with boiling water on adhesion strength of resin cements was evaluated. Rectangular shaped specimens were cut from CAD blocks of E-max (Ivoclar Vivadent) and Mark II (VITA Zahnfabrik) and randomly assigned to two main study groups. Group one specimens’ surfaces were conditioned using the two-step conditioning/priming procedure and group two specimens were treated using the one-step conditioning/priming system. After treating, 3 mm thick resin cement layer was applied onto the surface using a split stainless steel mold. Each group was further divided into four subgroups (n = 10) depending on type of resin cement applied and subjecting to exposure in boiling water. Adhesion strength of all the specimens was measured using the universal material testing machine, results were tabulated and subjected to statistical analysis at a significance level of p < 0.05. Adhesive resin showed higher values of 22.05 and 18.65 MPa with E-max and Mark II respectively, and resin composites showed 18.13 and 15.13 MPa with E-max and Mark II respectively, when two-step conditioning system was employed. Majority of the adhesive resin specimens showed cohesive failure in cement. Subjecting the specimens to exposure in boiling water for 24 h not only showed adhesive failure but also significantly reduced adhesion strength of adhesive resin and resin composite. The significance of the study is that, the traditional two-step ceramic surface conditioning is more effective than the one-step conditioning and unfilled adhesive resin provides better adhesion strength.  相似文献   

13.
ABSTRACT

Adjusting fibers shape can further optimize absorbing properties of the FeSiAlp/PP fibers composites. 80 wt% FeSiAlp/PP rhombic cross-sectional fibers were successfully prepared by liquid phase blending and extrusion drawing. The strength of the fibers is about 6 ~ 8 MPa. The effective absorption bandwidth (EAB, RL < ?10 dB) of the resin matrix composites modified by rhombic cross-sectional fibers is 3.9 GHz and the optimal RL reaches ?18.43 dB at 4.5 GHz. Compared with the resin matrix composites modified by circular cross-sectional fibers, the EAB increases by 1.8 GHz and there is a second absorption peak, which has better broadband absorption characteristics.  相似文献   

14.
Low‐density polyethylene (LDPE)‐coated sisal fiber prepreg was prepared by using solution coating process. These coated fiber prepregs were consolidated to make composites having different weight fraction of sisal fibers in a hot compression‐molding machine. This experimental study reveals that higher loading of sisal fiber up to 57wt% in LDPE–sisal composites is possible by this technique. Mechanical and abrasive wear characteristics of these composites were determined. The tensile strength of composites increased with the increase in sisal fiber concentration. Coating thickness of LDPE was varied by changing the viscosity of LDPE–xylene solution that manifested to different weight fraction of fiber in sisal–LDPE composites. Mechanical, dynamic mechanical, and abrasive wear characteristics of these composites were determined. The tensile strength and modulus of sisal composites reached to 17.4 and 265 MPa, respectively, as compared to 7.1 and 33MPa of LDPE. Storage modulus of sisal composites LD57 reached to 2.7 × 109 MPa at 40°C as compared to 8.1 × 108 MPa of LDPE. Abrasive wear properties of LDPE and its composites were determined under multi‐pass mode; pure LDPE showed minimum specific wear rate. The specific wear rate of composites decreased with the sliding distance. Increase of coated sisal fiber content increased the specific wear rate at all the sliding distances, which has been explained on the basis of worn surface microstructures observed by using SEM. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

15.
Natural rubber-Polyaniline (PANI)-Polyaniline coated short nylon-6 fiber (PANI-N6) composites were prepared by mechanical mixing and its cure characteristics, filler dispersion, mechanical properties, conductivity and thermal stability were evaluated. PANI was synthesized by chemical oxidative polymerization of aniline in presence of hydrochloric acid. PANI-N6 was prepared by in situ polymerization of aniline in the presence of short nylon-6 fiber. The composite showed higher tensile strength, tear strength and modulus values and lower elongation at break. The DC electrical conductivity and the thermal stability of the composites increased with PANI and PANI-N6 concentration. The highest conductivity obtained was 1.99 × 10?6 S/cm.  相似文献   

16.
Q.F. Cheng  J.J. Wen  C.H. Liu  K.L. Jiang  Q.Q. Li  S.S. Fan 《Carbon》2010,48(1):260-6045
Carbon nanotube (CNT)/epoxy composites with controllable alignment of CNTs were fabricated by a resin transfer molding process. CNTs with loading up to 16.5 wt.% were homogenously dispersed and highly aligned in the epoxy matrix. Both mechanical and electrical properties of the CNT/epoxy composites were dramatically improved with the addition of the CNTs. The Young’s modulus and tensile strength of the composites reach 20.4 GPa and 231.5 MPa, corresponding to 716% and 160% improvement compared to pure epoxy. The electrical conductivity of the composites along the direction of the CNT alignment reaches over 1 × 104 S/m.  相似文献   

17.
Polypropylene (PP) matrix calcium alginate fiber reinforced unidirectional composites (10% fiber by weight) were fabricated by compression molding. Tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM), and impact strength (IS) were found to be 26 MPa, 950 MPa, 38 MPa, 1320 MPa, and 20 kJ/m2, respectively. Degradation tests of composites were performed for 6 weeks in soil and it was found that composites retained almost 75% of its original strength. The interfacial properties of the composite were investigated by using single fiber fragmentation test (SFFT) and by scanning electron microscope (SEM).  相似文献   

18.
Jute fiber composites were prepared with novolac and coal, phenolated-oxidized super clean coal (POS), petroleum vacuum residue (XVR)–modifiedphenol-formaldehyde (novolac) resin. Five different type of resins, i.e., coal, POS, and XVR-modified resins were used by replacing (10% to 50%) with coal, POS, and XVR. The composites thus prepared have been characterized by tensile strength, hardness, thermogravimetric analysis (TGA), Fourier-transfer infrared (FT-IR), water absorption, steam absorption, and thickness swelling studies. Twenty percent POS-modified novolac composites showed almost the same tensile strength as that of pure novolac composites. After 30% POS incorporation, the tensile strength decreased to 25.84 MPa from 33.96 MPa in the case of pure novolac resin composites. However, after 50% POS incorporation, the percent retention of tensile strength was appreciable, i.e., 50.80% retention of tensile strength to that of pure novolac jute composites. The tensile strength of coal and XVR-modified composites showed a trend similar to that shown by POS-modified novolac resin composites. However, composites prepared from coal and XVR-modified resin with 50% phenol replacement showed 25.4% and 42% tensile strength retention, respectively, compared to that of pure novolac jute composites. It was found that the hardness of the modified composites slightly decreased with an increase in coal, POS, and XVR incorporation in the resin. The XVR-modified composites showed comparatively lower steam absorption than did coal or POS-modified composites. The thermal stability of the POS-modified composites was the highest among the composites studied. The detailed results obtained are being reported.  相似文献   

19.
Composites (50 wt% fiber) of jute fiber reinforced polyvinyl chloride (PVC) matrix and E-glass fiber reinforced PVC matrix were prepared by compression molding. Mechanical properties such as tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM) and impact strength (IS) of both types of composites was evaluated and compared. Values of TS, TM, BS, BM and IS of jute fiber/PVC composites were found to be 45 MPa, 802 MPa, 46 MPa, 850 MPa and 24 kJ/m2, respectively. It was observed that TS, TM, BS, BM and IS of E-glass fiber/PVC composites were found to increase by 44, 80, 47, 92 and 37.5%, respectively. Thermal properties of the composites were also carried out, which revealed that thermal stability of E-glass fiber/PVC system was higher. The interfacial adhesion between the fibers (jute and E-glass) and matrix was studied by means of critical fiber length and interfacial shear strength that were measured by single fiber fragmentation test. Fracture sides after flexural testing of both types of the composites were investigated by Scanning Electron Microscopy.  相似文献   

20.
There is a growing interest in the use of composite materials. Silk fiber/gelatin biocomposites were fabricated using compression molding. The fiber content in the composite varied from 10–30 wt%. Composite containing 30 wt% silk showed the best mechanical properties. Tensile strength, tensile modulus, bending strength, bending modulus and impact strength, hardness of the 30% silk content composites were found 54 MPa, 0.95 GPa, 75 MPa and 0.43 GPa and 5.4 kJ/m2, 95.5 Shore A, respectively. Water uptake properties at room temperature, accelerated weathering aging, irradiation, thermomechanical analysis, and degradation in soil were carried out in this experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号