首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Objective: The aim of this work was to investigate the potential of controlled precipitation of flurbiprofen on solid surface, in the presence or absence of hydrophilic polymers, as a tool for enhanced dissolution rate of the drug. The work was extended to develop rapidly disintegrated tablets.

Significance: This strategy provides simple technique for dissolution enhancement of slowly dissolving drugs with high scaling up potential.

Methods: Aerosil was dispersed in ethanolic solution of flurbiprofen in the presence and absence of hydrophilic polymers. Acidified water was added as antisolvent to produce controlled precipitation. The resultant particles were centrifuged and dried at ambient temperature before monitoring the dissolution pattern. The particles were also subjected to FTIR spectroscopic, X-ray diffraction and thermal analyses.

Results: The FTIR spectroscopy excluded any interaction between flurbiprofen and excipients. The thermal analysis reflected possible change in the crystalline structure and or crystal size of the drug after controlled precipitation in the presence of hydrophilic polymers. This was further confirmed by X-ray diffraction. The modulation in the crystalline structure and size was associated with a significant enhancement in the dissolution rate of flurbiprofen. Optimum formulations were successfully formulated as rapidly disintegrating tablet with subsequent fast dissolution.

Conclusions: Precipitation on a large solid surface area is a promising strategy for enhanced dissolution rate with the presence of hydrophilic polymers during precipitation process improving the efficiency.  相似文献   


2.
Abstract

Objective: Orally disintegrating tablets (ODTs) recently have gained much attention to fulfill the needs for pediatric, geriatric, and psychiatric patients with dysphagia. Aim of this study was to develop new ODT formulations containing mirtazapine, an antidepressant drug molecule having bitter taste, by using simple and inexpensive preparation methods such as coacervation, direct compression and to compare their characteristics with those of reference product (Remereon SolTab).

Materials and methods: Coacervation method was chosen for taste masking of mirtazapine. In vitro characterization studies such as diameter and thickness, weight variation, tablet hardness, tablet friability and disintegration time were performed on tablet formulations. Wetting time and in vitro dissolution tests of developed ODTs also studied using 900?mL 0.1?N HCl medium, 900?mL pH 6.8 phosphate buffer or 900?mL pH 4.5 acetate buffer at 37?±?0.2?°C as dissolution medium.

Results: Ratio of Eudragit® E-100 was chosen as 6% (w/w) since the dissolution profile of A1 (6% Eudragit® E-100) was found closer to the reference product than A2 (4% Eudragit® E-100) and A3 (8% Eudragit® E-100). Group D, E and F formulations were presented better results in terms of disintegration time. Dissolution results indicated that Group E and F formulations showed optimum properties in all three dissolution media.

Discussion: Formulations D1, D4, D5, E3, E4, F1 and F5 found suitable as ODT formulations due to their favorable disintegration times and dissolution profiles.

Conclusion: Developed mirtazapine ODTs were found promising in terms of showing the similar characteristics to the original formulation.  相似文献   

3.
The purpose of this study was to evaluate the taste masking potential of novel solid dispersions (SDs) using Eudragit® EPO as the excipient when incorporated into the orally disintegrating tablets (ODTs) for delivering a highly soluble drug with an extremely bitter taste. The pyridostigmine bromides (PB) SDs (PBSDs) were prepared by solvent evaporation–deposition method. The physicochemical properties of PBSDs were investigated by means of differential scanning calorimetry and Fourier transformed infrared spectroscopy. The dissolution test showed that only about 8% of PB was released from PBSDs in the simulated salivary fluid in 30 s. Therefore, PBSDs were considered taste-masked and selected for formulation of PBODTs. A central composite design was employed for process optimization. Multiple linear regression analysis for process optimization revealed that the optimal PBODTs were obtained, when the microcrystalline cellulose and crospovidone were 17.16 and 5.55 (%, w/w), respectively, and the average in vivo disintegration time was 25 s. The bitterness threshold of PB was examined by a sensory test, and the threshold value was set as 3?mg in each tablet. Taste evaluation of PBODTs in 18 volunteers revealed considerable taste masking with bitterness below the threshold value. PBODTs also revealed rapid drug release (around 99%, 2?min) in the simulated gastric fluid. The mean PB plasma concentration–time profiles of PBODTs and that of the commercial tablets were comparable, with closely similar pattern. Bioequivalence assessment results demonstrated that PBODTs and the commercial tablets were bioequivalent. In conclusion, PBODTs are prepared successfully, with taste masking and rapid disintegration in the oral cavity.  相似文献   

4.
Context: The bitter taste of drug is masked by the exchange of ionized drugs with counter ions of ion exchange resin, forming “resinate”. Cyclodextrin reduces the unpleasant taste and enhances the drug solubility by encapsulating drug molecules into its central cavity.

Objective: Oral disintegrating tablets (ODTs) using the combination of ion exchange resin and cyclodextrin was developed, to mask the bitter taste and enhance drug dissolution.

Methods: Meloxicam (MX) was selected as a model drug. Formulations containing various forms of MX (free drug, MX-loaded resin or resinate, complexes of MX and 2-hydroxypropyl-β-cyclodextrin (HPβCD) or MX/HPβCD complexes, and a mixture of resinate and MX/HPβCD complexes) were made by direct compression. The ODTs were evaluated for weight variation, thickness, diameter, hardness, friability, disintegration time, wetting time, MX content, MX release, degree of bitter taste and stability.

Results and discussion: The tablet hardness was ~3?kg/in2, and the friability was <1%. Tablets formulated with resinate and the mixture of resinate and MX/HPβCD complexes disintegrated rapidly within 60?s, which is the acceptable limit for ODTs. These results were corresponded to the in vivo disintegration and wetting times. However, only tablets containing the mixture of resinate and MX/HPβCD complexes provided complete MX dissolution and successfully masked the bitter taste. In addition, this tablet was stable at least 6 months.

Conclusions: The combination of ion exchange resin and cyclodextrin could be used in ODTs to mask the bitter taste and enhance the dissolution of drugs that are weakly soluble in water.  相似文献   

5.
Development of oral disintegrating tablets requires enhancement of drug dissolution and selection of sweetener. Co-crystallization of drugs with inert co-former is an emerging technique for enhancing dissolution rate. The benefit of this technique will become even greater if one of the sweeteners can act as co-crystal co-former to enhance dissolution and mask the taste. Accordingly, the objective of this work was to investigate the efficacy of sucralose as a potential co-crystal co-former for enhancing the dissolution rate of hydrochlorothiazide. This was extended to prepare oral disintegrating tablets. Co-crystallization was achieved after dissolving hydrochlorothiazide with increasing molar ratios of sucralose in the least amount of acetone. The co-crystallization products were characterized using Fourier transform infrared spectroscopy, differential thermal analysis and powder X-ray diffraction. These measurements indicated that co-crystallization process started at a drug sucralose molar ratio of 1:1 and completed at 1:2. The developed co-crystals exhibited faster drug dissolution compared with the control, with co-crystal containing the drug with sucralose at 1:2 molar ratio being optimum. The later was used to prepare fast disintegrating tablets. These tablets had acceptable physical characteristics and showed fast disintegration with subsequent rapid dissolution. The study introduced sucralose as co-crystal co-former for enhanced dissolution and masking the taste.  相似文献   

6.
Olanzapine (OLAN) as an antipsychotic agent has shown its potential in effective management of psychotic disorders however its use is limited because of its poor water solubility. The aim of present work was to improve solubility of OLAN by developing a stable nanocrystal based orally disintegrating tablets (ODTs), using hyperomellose as potential stabilizer. Comparative evaluation of electrospraying and lyophilization as solidification techniques was carried out to assess its effect on solid state properties of OLAN nanocrystals before transformation to ODTs.OLAN Nanosuspension was developed using antisolvent precipitation method and exhibited particle size, polydispersity index and zetapotential value of 223.1?±?1.5?nm, 0.105?±?0.4 and ?17.9?±?3.5?mV respectively. Solid powders obtained from both the solidification techniques were compared in terms of size after re-dispersion, particle morphology, surface area, pore volume and solid state of drug present. Subsequently ODTs were prepared from these powders with needful excipients and % amount dissolved was evaluated. Rate of dispersion was found to be higher for ODTs prepared using lyophilized powder (~84% in 5?min) while other characterization parameters were comparatively similar. Overall, Lyophilization resulted in powders with better bulk level properties in comparison to electrospraying process.  相似文献   

7.
8.
The purpose of this research was to develop an orally disintegrating tablet (ODT) dosage form containing taste-masked beads of clindamycin HCl. Several formulation strategies were evaluated and a taste-masked ODT of clindamycin HCl was prepared without the use of a waxy cushioning agent. Clindamycin HCl (ca. 46% w/w) was coated onto microcrystalline cellulose beads (Cellets® 200) followed by the addition of a taste-masking layer of amino methacrylate copolymer, NF (Eudragit EPO® (EPO)) coating suspension. The efficiency of both the drug coating process and the taste-masking polymer coating process, as well as the taste masking ODTs was determined using potency and drug release analysis. Magnesium stearate was found to be advantageous over talc in improving the efficiency of the EPO coating suspension. A response surface methodology using a Box–Behnken design for the tablets revealed compression force and levels of both disintegrant and talc to be the main factors influencing the ODT properties. Blending of talc to the EPO-coated beads was found to be the most critical factor in ensuring that ODTs disintegrate within 30?s. The optimized ODTs formulation also showed negligible (<0.5%) drug release in 1?min using phosphate buffer, pH 6.8 (which is analogous to the residence time and pH in the oral cavity). By carefully adjusting the levels of coating polymers, the amounts of disintegrant and talc, as well as the compression force, robust ODTs can be obtained to improve pediatric and geriatric patient compliance for clindamycin oral dosage forms.  相似文献   

9.
The objective of this study was to formulate directly compressible rapidly disintegrating tablets of fenoverine with sufficient mechanical integrity, content uniformity, and acceptable palatability to assist patients of any age group for easy administration. Effect of varying concentrations of different superdisintegrants such as crospovidone, croscarmellose sodium, and sodium starch glycolate on disintegration time was studied. Tablets were evaluated for weight variation, thickness, hardness, friability, taste, drug content, in vitro and in vivo disintegration time, and in vitro drug release. Other parameters such as wetting time, water absorption ratio ('R'), and drug-excipient compatibility were also evaluated. The disintegration time of the best rapidly disintegrating tablet formulation among those tested was observed to be 15.9 sec in vitro and 37.16 sec in vivo. Good correlation was observed between disintegration time and 'R' for each of the three superdisintegrants at the concentrations studied. Considering the 'R' values and disintegration time, crospovidone was significantly superior (p < 0.05) compared to the other superdisintegrants tested. Release of drug was faster from formulations containing 6% crospovidone (CP 6) compared to the marketed fenoverine (Spasmopriv(R)) capsules. Similarity factor 'f(2)' (51.5) between dissolution profiles of the rapidly disintegrating tablet formulation CP 6 and the marketed formulation indicated that the two dissolution profiles were similar. Differential scanning calorimetric studies did not indicate any excipient incompatibility, either during mixing or after compression. In conclusion, directly compressible rapidly disintegrating tablets of fenoverine with lower friability, acceptable taste, and shorter disintegration times were obtained using crospovidone and other excipients at optimum concentrations.  相似文献   

10.
The purpose of this study was to evaluate the palatabilities of the original and nine generic versions of famotidine orally disintegrating tablets (FODTs) by means of disintegration times and bitterness intensities determined using in combination disintegration device and taste sensor comparison of human gustatory sensation tests. The disintegration times were determined using a new disintegration testing equipment for ODTs, the OD-mate and bitterness intensities were determined using the SA501C taste-sensing system. The disintegration time and bitterness of each FODT was evaluated in gustatory sensation tests. There was a good correlation between the disintegration times of 10 FODTs estimated in human gustatory testing and those found using the OD-mate. The bitterness intensities of FODTs at 10, 20 and 30?s after starting the disintegration using the OD-mate and the values determined by the taste sensor were highly correlated with the bitterness intensities determined in gustatory sensation testing. A combination of the OD-mate and the SA501C was capable of predicting the palatabilities, disintegration properties and bitterness intensity of FODTs.  相似文献   

11.
This study was intended to design an orally disintegrating tablet (ODT) formulation that can mask the extremely bitter and metallic taste of phencynonate HCl by novel ion-exchange resins. The drug–resin complexes (DRCs) were prepared and characterized by scanning electron microscopy, X-ray powder diffraction and differential scanning calorimetry. In vitro properties (dissolution, wetting time and disintegration time) and in vivo behavior (disintegration time and taste-masking effect) in healthy volunteers of the prepared ODTs were also investigated. The drug was changed from the crystal structure to the amorphous form in the DRC. Compared with commercial tablets, the in vitro and in vivo disintegration of optimized DRC-loaded ODTs with a drug-resin ratio of 1:1 was greatly improved and better palatability with a low bitterness index (0.33) was obtained. The current DRC-loaded ODT could promise a good way to mask the unpleasant taste of certain drugs and accordingly improve the patient compliance.  相似文献   

12.
In this study, a new discriminative dissolution condition for lacidipine tablets was developed by the established in vitroin vivo relationship. Series of dissolution media of phosphate buffer solution (PBS) covering the pH range of 1–7.2 and pH 6.8 PBS containing different concentrations of sodium dodecyl sulfate (SDS), were prepared and used to investigate the dissolution behavior of lacidipine tablets. There was an obvious difference in the dissolution profiles of the both brands in pH 6.8 PBS medium containing 0.1% SDS. The pharmacokinetic study of the two lacidipine tablets was carried out in the healthy beagle dogs at a single dose of 4?mg. Statistical comparison of the AUC0–24, Cmax, and Tmax showed a significant difference in the two brand tablets, coinciding with the dissolution performance with pH 6.8 PBS containing 0.1% SDS. The superiority of the proposed system, pH 6.8 PBS containing 0.1% SDS, could serve as a dissolution medium for lacidipine tablets, and more important it could discriminate the in vivo pharmacokinetic behavior for different brands of products. In summary, in vivo pharmacokinetic evaluation is essential to develop an appropriate in vitro dissolution condition for oral solid dosage forms of poorly soluble drugs.  相似文献   

13.
Abstract

Context: AS FDSTs will provide an accessible alternative for AS autoinjector (ATROPEN®), and a noninvasive first-aid antidote for the treatment of organophosphate (OP) poisoning and reduce the number of fatalities due to nerve gas attacks or OP pesticide poisoning.

Objective: The effects of changing the filler grade on the characteristics of atropine sulfate (AS) fast disintegrating sublingual tablets (FDSTs) and AS sublingual permeability were investigated in order to optimize the formulation of AS FDSTs and, therefore, AS sublingual permeability.

Methods: Two batches of AS FDSTs containing AS 8?mg were formulated and manufactured using two different filler grades: microcrystalline cellulose (MCC) UF-702 (formulation A) and MCC PH-301 (formulation B). Several United States Pharmacopeia (USP) and non-USP physical tests were performed to evaluate the AS FDSTs’ characteristics. The AS permeability from the two AS FDST batches were evaluated using Franz cells through excised porcine sublingual membranes. Results were statistically compared at p?<?.05.

Results: Both batches passed the content uniformity and friability tests. Formulation A tablets were significantly different from formulation A tablets and resulted in better powder flowability, higher breaking force, faster disintegration, faster dissolution rate, higher water uptake, and higher AS permeability.

Conclusion: The selection of the filler grade to be used in the formulation of AS FDSTs can significantly impact their characteristics and significantly affect AS sublingual permeability, which can be used to improve the sublingual delivery of AS and the potential of using AS FDSTs as an alternative dosage form for the first-aid treatment of OP poisoning.  相似文献   

14.
Objective: To mask the bitterness of Chlorpheniramine Maleate via encapsulating drug into Eudragit EPO microparticles, and then incorporate these microparticles into orally disintegrating films (ODF) and orally disintegrating tablets (ODT) for pediatric uses.

Methods: Spray drying of water-in-oil emulsion was utilized to encapsulate Chlorpheniramine Maleate into Eudragit EPO microparticles. Based on an orthogonal experimental design L9 (33), polynomial regression models were developed to evaluate correlation between microparticle properties (encapsulation efficiency and drug release) and variables (X1: weight ratio of polymer to drug, X2: volume ratio of oil to water and X3: Q-flow of spray dryer). ODF and ODT formulations were evaluated including weight variation, content uniformity, tensile strength, disintegration time, friability and dissolution profiles. The bitterness taste test was evaluated in 10 adult volunteers.

Results and discussion: From polynomial regression analysis, the best values of variables leading to the optimized microparticles were X1?=?10, X2?=?3 and X3?=?45. The optimized microparticles were incorporated into ODF and ODT with satisfactory weight and drug content uniformity, and acceptable physical strength. Both dosage forms disintegrated immediately (less than 40?s) in simulated saliva solutions. The outcome of taste-masking test indicated that microparticles alleviated drug bitterness significantly; bitterness was not discernible with microparticles incorporated in ODT, whereas only slight bitterness was detected from microparticles incorporated into ODF.

Conclusion: Both ODF and ODT are shown to be suitable vehicles for taste masked Chlorpheniramine Maleate microparticles with potential for pediatric uses.  相似文献   

15.
The current research attempts different approaches to overcome the poor dissolution of budesonide (a poorly water-soluble drug) from pellet formulations. Various methods such as liqui-pellet (LP) and pellets made of solid dispersion (SDP) were employed and compared to conventional pellets (CP). In SDP method, budesonide:PVP solid dispersion was prepared followed by extrusion-pelletization. Solid dispersion of budesonide-PVP was also layered to the surface of placebo pellets (LSDP). In LP technique, budesonide dispersed in PEG 400 was mixed with Avicel or Avicel:lactose and was extruded-spheronized. Pellets were evaluated for their shape, size, mechanical properties and dissolution rate. The pellets made by LSDP method were significantly harder than CP or PSDP. LP with a loading factor greater than 0.34 was very soft compared to CP and SDP. Pelletization of budesonide SD (PSDP) did not have a tremendous effect on the dissolution enhancement of budesonide compared to CP whilst LSDP showed faster drug release. In conclusion, the layering of budesonide solid dispersion on placebo pellets (LSDP) was the most promising approach for the production of pellets with the highest dissolution rate so that more than 80% of the drug was released within the first 5 min. Also this formulation had proper mechanical properties. This method has the capability to overcome the poor dissolution of budesonide associated with the pellet containing Avicel, and could be employed for the dissolution enhancement of other poorly water-soluble drugs in pellet form.  相似文献   

16.
We have developed fast-disintegrating tablets comprising starch-based pellets and excipient granules for intravaginal drug delivery. The purpose of this study was to evaluate the intravaginal disintegration, distribution and retention behavior of these tablets in sheep and women using colposcopy as visualization technique. One tablet was administered to each study subject (n = 6) and repeated colposcopy examination was performed over a 48?h and 24?h period in sheep and women, respectively. Colposcopy in sheep indicated that in vivo tablet disintegration was initiated within 30?min of vaginal administration and that due to disintegration of the pellets themselves, the formulation was transformed into a gel-like mass which distributed throughout the entire vaginal cavity within 2–4?h. In vivo tablet disintegration after intravaginal administration to women was complete within 4?h, whereby the formulation gradually spread throughout the vaginal cavity as complete covering was observed after 12 and 24?h. The persistent retention (up to 24 and 48?h in women and sheep, respectively) confirmed the long retention time of this vaginal formulation.  相似文献   

17.
Purpose: In this study, micron-sized crystalline drug particles of irbesartan (IBS) were prepared to improve its stability and dissolution rate.

Method: The approach to crystalline particles was based on the liquid precipitation process by which the amorphous particles were prepared. Pharmaceutical acceptable additives were used as the crystallization agent to convert the amorphous drug into crystalline particles. High pressure homogenization (HPH) process has been employed to reduce the size of the crystalline particles, and the micron-sized particles were obtained by the freeze-drying process.

Results: Different additives show different influences on the polymorphic form of IBS. Polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose (HPMC) were effective in stabilizing amorphous particles instead of converting amorphous drug into crystalline particles, while poloxamer407 (F127) and tween80 (T80) could convert the amorphous drug into crystalline particles. T80 was also effective in controlling the particle size than that of F127. After HPH, crystalline particles with an average of 0.8 μm were obtained. The freeze-dried micron-sized crystalline particles exhibited significantly enhanced in vitro dissolution rate when compared to the raw drug. SEM, FT-IR, XRD, DSC and dissolution rate studies indicated that the micron-sized particles were stable during 6 months storage.

Conclusion: The preparation of micron-sized crystalline drug particles is an effective way to improve the stability and dissolution rate of irbesartan.  相似文献   

18.
Directly compressed mini tablets were produced containing either hydroxypropylmethylcellulose (HPMC) or ethylcellulose (EC) as release controlling agent. The dynamics of water uptake and erosion degree of polymer were investigated. By changing the polymer concentration, the ibuprofen release was modified. In identical quantities, EC produced a greater sustaining release effect than HPMC. Different grades of viscosity of HPMC did not modify ibuprofen release. For EC formulations, the contribution of diffusion was predominant in the ibuprofen release process. For HPMC preparations, the drug release approached zero-order during a period of 8 h. For comparative purposes, tablets with 10 mm diameter were produced.  相似文献   

19.
The purpose of this experimental work was the development of hydrophilic–lipophilic matrix tablets for controlled release of slightly soluble drug represented here by diclofenac sodium (DS). Drug dissolution profile optimization provided by soluble filler was studied. Matrix tablets were based on cetyl alcohol as the lipophilic carrier, povidone as the gel-forming agent, and common soluble filler, that is lactose or sucrose of different particle size. Physical properties of tablets prepared by melt granulation and drug release in a phosphate buffer of pH 6.8 were evaluated. In vitro studies showed that used filler type, filler to povidone ratio and sucrose particle size influenced the drug release rate. DS dissolution profile could be changed within a wide range from about 50% per 24 hours to almost 100% in 10 hours. The release constant values confirmed that DS was released from matrices by the diffusion and anomalous transport. The influence of sucrose particle size on the drug release rate was observed. As the particle size decreased, the drug release increased significantly and its dissolution profile became more uniform. Soluble fillers participated in the pore-forming process according to their solubility and particle size. Formulations containing 100 mg of the drug, 80 mg of cetyl alcohol, 40 mg of povidone, and 80 mg of either lactose or sucrose (particle size 250–125 μm) were considered optimal for 24-hour lasting dissolution of DS.  相似文献   

20.
Objective: The objective of this study is to investigate the wet-milled-drug layering process which could significantly improve the dissolution rate and oral bioavailability of fenofibrate pellets.

Methods: Fenofibrate was milled with HPMC-E5 to prepare a uniform suspension in the micrometer and nanometer range, and this suspension was then layered on to sugar spheres to form the pellets (F1, F2).

Results: The particle size was significantly reduced (from 1000 µm to 1–10 µm and 400?nm) but the fenofibrate in suspension retained its crystallinity from the results of DSC and PXRD investigations. The dissolution rate of F1-F2 and Antara® capsules was 55.47 %, 61.27 % and 58.43 %, respectively, in 0.01?mol/L SDS solution over 60?min. In addition, F1, F2, and Antara® capsules were given orally to 6 beagle dogs to determine the bioavailability. The Cmax of F1, F2 (8.21?±?2.55 and 9.33?±?2.37 μg/mL)and the AUC(0?t) of F1, F2 (152.46?±?78.89 and 172.17?±?67.58 μg/mL·h)were higher than those of Antara® (6.02?±?3.34 μg/mL and 89.82?±?46.46 μg/mL·h) and, F1, F2 reached their Cmax earlier than Antara® (F1: 2.0?±?1.1?h; F2: 1.8?±?1.2?h; Antara®: 6.0?±?8.9?h).

Conclusion: These results show that the wet-milled-drug layering technique is a powerful method to improve the dissolution rate and the bioavailability of fenofibrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号