首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydroxyapatite/polyamide‐66 (HA/PA66) composite scaffolds were prepared using injection‐molding technique and also analyzed by means of scanning electron microscopy, X‐ray diffraction, differential scanning calorimetry, Fourier transform infrared spectroscopy, and mechanical testing. Compared with common methods to fabricate scaffolds, this process can fabricate composite scaffolds in a rapid and convenient manner by adjusting the experimental conditions of foaming agent and shot size. The interactions between PA66 and HA particles affect the crystallization behavior of PA66 and the pore structure of scaffolds. HA particles can increase the stiffness of composite scaffolds accompanied by the reduction of impact strength, pore size and porosity. The obtained 40 wt% HA/PA66 composite scaffolds with a pore size ranging from 100–500 μm and a porosity more than 65% can simultaneously meet the requirements of porous structure and mechanical performance. POLYM. ENG. SCI., 54:1003–1012, 2014. © 2013 Society of Plastics Engineers  相似文献   

2.
A new mini‐deposition system (MDS) was developed to fabricate scaffolds with interconnected pore structures and anatomical geometry for bone tissue engineering. Polycaprolactone/hydroxyapatite (PCL/HA) composites with varying hydroxyapatite (HA) content were adopted to manufacture scaffolds by using MDS with a porosity of 54.6%, a pore size of 716 μm in the xy plane, and 116 μm in the z direction. The water uptake ratio and compressive modulus of PCL/HA composite scaffold increase from 8 to 39% and from 26.5 to 49.8 MPa, respectively, as the HA content increases from 0 to 40%. PCL/HA composite scaffolds have better wettability and mechanical properties than pure PCL scaffold. A PCL/HA composite scaffold for mandible bone repair was successfully fabricated with both interconnected pore structures and anatomical shape to demonstrate the versatility of MDS. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

3.
Novel porous composite scaffolds for tissue engineering were prepared from aliphatic biodegradable polyurethane (PU) elastomer and hydroxyapatite (HA). It was found that the aliphatic PU was possible to load up to 50 wt % HA. The morphology and properties of the scaffolds were characterized by scanning electron microscope, X‐ray diffraction, infrared absorption spectra, mechanical testing, dynamic mechanical analysis, and in vitro degradation measurement. The results indicated that the HA/PU scaffolds had an interconnected porous structure with a pore size mainly ranging from 300 to 900 μm, and 50–200 μm micropores existed on the pores' walls. The average pore size of macropores and micropores are 510 and 100 μm, respectively. The compressive strength of the composite scaffolds showed higher enhancement with increasing HA content. In addition, the polymer matrix was completely composed of aliphatic component and exhibited progressive mass loss in vitro degradation, and the degradation rate depended on the HA content in PU matrix. The porous HA/PU composite may have a good prospect to be used as scaffold for tissue engineering. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
We produced highly aligned porous poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) scaffolds by unidirectionally freezing PCL/HA solutions with various HA contents (0, 5, 10 and 20 wt% in relation to the PCL polymer) and evaluated their mechanical properties and in vitro biocompatibility to examine their potential applications in bone tissue engineering. All the prepared scaffolds had a highly aligned porous structure, in which the HA particles were uniformly dispersed in the PCL walls. The elastic modulus of the PCL/HA scaffolds significantly increased from 0.12 ± 0.02 to 2.65 ± 0.05 MPa with increasing initial HA content from 0 to 20 wt%, whereas the pore size decreased from 9.2 ± 0.7 to 4.2 ± 0.8 μm. In addition, the PCL/HA scaffolds showed considerably enhanced in vitro cellular responses that were assessed in terms of cell attachment, proliferation and osteoblastic differentiation.  相似文献   

5.
In this study, novel poly(ε‐caprolactone) (PCL) composite scaffolds were prepared for bone tissue engineering applications, where gentamicin‐loaded β‐tricalcium phosphate (β‐TCP)/gelatin microspheres were added to PCL. The effects of the amount of β‐TCP/gelatin microspheres added to the PCL scaffold on various properties, such as the gentamicin release rate, biodegradability, morphology, mechanical strength, and pore size distribution, were investigated. A higher amount of filler caused a reduction in the mechanical properties and an increase in the pore size and led to a faster release of gentamicin. Human osteosarcoma cells (Saos‐2) were seeded on the prepared composite scaffolds, and the viability of cells having alkaline phosphatase (ALP) activity was observed for all of the scaffolds after 3 weeks of incubation. Cell proliferation and differentiation enhanced the mechanical strength of the scaffolds. Promising results were obtained for the development of bone cells on the prepared biocompatible, biodegradable, and antimicrobial composite scaffolds. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40110.  相似文献   

6.
The use of porous three-dimensional (3D) composite scaffolds has attracted great attention in bone tissue engineering applications because they closely simulate the major features of the natural extracellular matrix (ECM) of bone. This study aimed to prepare biomimetic composite scaffolds via a simple 3D printing of gelatin/hyaluronic acid (HA)/hydroxyapatite (HAp) and subsequent biomineralization for improved bone tissue regeneration. The resulting scaffolds exhibited uniform structure and homogeneous pore distribution. In addition, the microstructures of the composite scaffolds showed an ECM-mimetic structure with a wrinkled internal surface and a porous hierarchical architecture. The results of bioactivity assays proved that the morphological characteristics and biomineralization of the composite scaffolds influenced cell proliferation and osteogenic differentiation. In particular, the biomineralized gelatin/HA/HAp composite scaffolds with double-layer staggered orthogonal (GEHA20-ZZS) and double-layer alternative structure (GEHA20-45S) showed higher bioactivity than other scaffolds. According to these results, biomineralization has a great influence on the biological activity of cells. Hence, the biomineralized composite scaffolds can be used as new bone scaffolds in bone regeneration.  相似文献   

7.
《应用陶瓷进展》2013,112(7):367-373
Abstract

Open and interconnected porous scaffolds were prepared with various ratios of hydroxyapatite (HA)/β-tricalcium phosphate by a combination of gel casting and polymer sponge methods to improve the mechanical properties and structure. The scaffolds were prepared using slurries containing 50 vol.-% of ceramic powders and sintered at 1100°C for 2 h. Thermogravimetric analysis result shows that the proper temperature to burn out organic materials and polyurethane foams is 600°C. The compressive strength was between 5·3 and 8·4 MPa. Field emission scanning electron microscope shows an open, relatively uniform and large interconnected porous structure with pore size ranging between 150 and 400 μm. X-ray diffraction and Brunauer–Emmett–Teller methods were employed to determine the microstructural crystallite and surface area respectively. The results show that the compressive strength of scaffolds increased with the increase in HA concentration. The reason can be explained by the increasing pore wall thickness and density in scaffolds.  相似文献   

8.
The mechanical and tribological properties of carbon fiber (CF) reinforced polyamide 66 (PA66)/polyphenylene sulfide (PPS) blend composite were studied in this article. It was found that CF reinforcement greatly increases the mechanical properties of PA66/PPS blend. The friction coefficient of the sample decreases with the increase of CF content. When CF content is lower (below 30%), the wear resistance is deteriorated by the addition of CF. However, the loading of higher than 30% CF significantly improves the tribological properties of the blend. The lowest friction coefficient (0.31) and the wear volume (1.05 mm3) were obtained with the PA66/PPS blend containing 30% CF. The transfer film and the worn surface formed by sample during sliding were examined by scanning electron microscopy. The observations revealed that the friction coefficient of PA66/PPS/CF composite depends on the formation and development of a transfer film on the counterface. The abrasive wear caused by ruptured CFs (for lower CF content) and the load bearing ability of CFs (for higher CF content) are the major factors affecting the wear volume. In addition, the improvements of mechanical properties, thermal conductivity, and self‐lubrication of bulk CFs are also contributed to the wear behavior of PA66/PPS/CF composite. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
采用溶剂浇铸/真空挥发/粒子沥滤法(SC/VV/PL)制备了聚乳酸(PLA)和PLA/羟基磷灰石(HA)多孔支架,研究了支架的结构、力学性能、亲水性能等.从扫描电镜结果可以看出支架孔径与所用的致孔剂氯化钠(NaCl)的粒径符合良好,PLA和PLA/HA支架的孔隙率均大于79%,压缩模量、接触角、吸水率的测试结果表明,HA的加入显著改善了PLA支架的力学性能和亲水性能.  相似文献   

10.
分别以乙烯-乙酸乙烯共聚物(EVA)、乙烯-1-辛烯共聚物(POE)、苯乙烯-丁二烯-苯乙烯共聚物(SBS)为增韧剂,研究了它们对聚酰胺6(PA6)/聚酰胺6接枝马来酸酐(PA6-g-MAH)/云母复合材料力学性能的影响。结果表明:以EVA为增韧剂所得复合材料的力学性能优于以POE或SBS为增韧剂所得复合材料;复合材料的冲击强度随EVA用量的增大而上升,当EVA用量为10%时,其冲击强度达到19.01 kJ/m2,较未经增韧改性的复合材料提高了5.29 kJ/m2;但复合材料的拉伸强度和弯曲模量均随增韧剂用量的增大而降低。  相似文献   

11.
通过双螺杆挤出机利用熔融挤出法制备了增韧的尼龙66/乙烯-醋酸乙烯酯共聚物接枝马来酸酐共混物(PA66/EV-g-MAH)。实验结果表明,未经接枝改性的EVA与PA66是不相容的,对增韧PA66几乎没有贡献,而EVA-g-MAH则出现了明显的增韧效果。在熔融挤出过程中,PA66与EVA-g-MAH发生了原位化学反应,生成了PA66-EVA共聚物,这种共聚物细化了分散相尺寸,使得分散相在PA66基体中分散得更均匀,提高了两相的相容性,同时增强了丙相界面间的结合力,便利应力能够在两相产有效地传递,这种界面形态的改善直接影响到共混物力学性能的变化。随着EVA-g-MAH含量的增加,PA66/EVA-g-MAH共混物的冲击强度提高,当PA66/EVA-g-MAH的共混比为70/30(质量比)进,体系发生了脆韧转变,冲击强度达到了最大,比纯PA66、PA66/EVA(70/30)共混物提高了12倍。和PE-g-MAH、PP-g-MAH相比,EVA-g-MAH对PA66的增韧效果最好。  相似文献   

12.
Carrageenan–hyaluronic acid/nanohydroxyapatite/microcrystalline cellulose composite scaffolds with various amounts of microcrystalline cellulose content (from 0 to 60?wt%) were prepared using freeze-drying method. The results showed highly porous (from 94.0?±?1.09 to 85.0?±?1.05%) composite scaffolds with high water-uptake capacity, average pore size ranging 200–650?µm, and improved mechanical properties (in dry and wet states). Additionally, cytocompatibility of composite scaffolds was evaluated by in vitro culture of osteoblast (MC3T3-E1) cells for 1 and 3 days of incubation and demonstrated good cell adhesion, infiltration, and proliferation. Thus, as-obtained composite scaffolds may have promising application in low-loading bone tissue engineering applications.  相似文献   

13.
《Ceramics International》2017,43(15):11780-11785
Porous hydroxyapatite/tricalcium phosphate (HA/TCP) ceramic scaffolds with a uniform unidirectional pore structure were successfully fabricated by an ice-templating method by using Ca-deficient HA whiskers and phosphate bioglass. HA whiskers showed good dispersibility in the slurry and favoured the formation of interconnected pores in the scaffolds. Addition of bioglass powders enhanced the material sintering process and the phase transformation of Ca-deficient HA to β-TCP. Calcium-phosphate-based scaffolds with a composition from HA to an HA/β-TCP complex could be obtained by controlling the freezing moulding system and slurry composition. The fabricated scaffolds had a porosity of 75–85%, compressive strength of 0.5–1.0 MPa, and a pore size range of 130–200 µm.  相似文献   

14.
Ethylene‐vinyl acetate copolymer (EVA)/poly(?‐caprolactone) (PCL) blend (50/50 w/w) with co‐continuous morphology was prepared via melt mixing for fabricating microporous EVA membrane materials through selective solvent extraction. Shear flow and quiescent annealing techniques were employed to control co‐continuous phase size in the EVA/PCL blend, and the time‐ and temperature‐dependent relations of phase size were then evaluated theoretically. Using these techniques, microporous EVA membrane materials with various pore sizes ranging from 2 µm to more than 200 µm were obtained. In contrast to the porous EVA membrane prepared by the traditional way of solvent casting/particulate leaching, the as‐obtained microporous membrane shows a higher level of interconnectivity and much narrower pore size distribution with uniform pore structure. © 2013 Society of Chemical Industry  相似文献   

15.
Macroporous scaffolds with controllable pore structure and mechanical properties were fabricated by a porogen fusion technique. Biodegradable material poly (d, l-lactide) (PDLLA) was used as the scaffold matrix. The effects of porogen size, PDLLA concentration and hydroxyapatite (HA) content on the scaffold morphology, porosity and mechanical properties were investigated. High porosity (90% and above) and highly interconnected structures were easily obtained and the pore size could be adjusted by varying the porogen size. With the increasing porogen size and PDLLA concentration, the porosity of scaffolds decreases, while its mechanical properties increase. The introduction of HA greatly increases the impact on pore structure, mechanical properties and water absorption ability of scaffolds, while it has comparatively little influence on its porosity under low HA contents. These results show that by adjusting processing parameters, scaffolds could afford a controllable pore size, exhibit suitable pore structure and high porosity, as well as good mechanical properties, and may serve as an excellent substrate for bone tissue engineering.  相似文献   

16.
Morphology and properties of poly(butylene terephthalate) (PBT)/nylon 6 (PA6)/EVA‐g‐MAH ternary blends were investigated. The blends were prepared in a corotating, intermeshing, twin‐screw extruder. The incorporation of maleic anhyride (MAH) grafted onto ethylene‐vinyl acetate copolymer (EVA) (EVA‐g‐MAH) in the PBT/PA6 binary blends decreased the tensile and flexural strength but increased the impact strength, while the mechanical properties of the PBT/PA6 blends were decreased with increasing PA6 content regardless of the presence or absence of the EVA‐g‐MAH. The morphology studies of the ternary blends showed gross phase separation. The rheological properties of the ternary blends suggested that excessively high reactivity between amine end groups of PA6 and MAH grafted onto EVA makes the compatibility between PBT and PA6 worse, although EVA‐g‐MAH was expected to work as a compatibilizer for PBT/PA6 blends. The degree of reactivity between functional groups in PBT, PA6, and EVA‐g‐MAH was also examined by investigating the effect of blending sequence on the properties of the ternary blends.  相似文献   

17.
Hydroxyapatite/ethylene‐vinyl acetate (HA/EVA) composites were prepared by injection molding and characterized by X‐ray diffraction (XRD) and attenuated total multiple reflection infrared (ATR‐IR) spectroscopy. The nonisothermal crystallization behavior of HA/EVA composites at different cooling rates and with different HA content were examined by differential scanning calorimetry (DSC). The results exhibit the occurrence of interaction between HA and EVA, and the HA particles in EVA matrix act as effective nucleation agent. The addition of HA influences the mechanism of nucleation and growth of EVA crystallites. HA particles, as nucleus, are efficient to promote EVA crystallization at early stage but prevent EVA crystal growth in the late stage. The EVA crystallization in the composite is mainly through heterogeneous nucleation. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
The mechanical properties of blends of polyamide6 (PA6) and ethylene vinyl acetate (EVA) at a blending composition of 0–50 wt % EVA were studied. The notched Izod impact strength of PA6 increased with the incorporation of EVA, the increase being more than 100% compared to PA6 at 10% EVA. The tensile strength and the tensile modulus of the blends decreased steadily as the weight percent of EVA increased. Analysis of the tensile data using predictive theories indicated the extent of the interaction of the dispersed phase and the matrix up to 20 wt % EVA. SEM studies of the cryogenically fractured surfaces indicated increase in the dispersed phase domain size with EVA concentrations. On the other hand, impact fractured surfaces of PA6/EVA blends indicated debonding of EVA particles, leaving hemispherical bumps, indicating inadequate interfacial adhesion between PA6 and EVA. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1593–1606, 2002  相似文献   

19.
以高熔体强度聚丙烯(PP)和乙烯-醋酸乙烯共聚物(EVA)为主要原料,通过化学-模压发泡法制备聚丙烯/乙烯-醋酸乙烯酯(PP/EVA)发泡复合材料并采用差示扫描量热仪(DSC)、扫描电子显微镜(SEM)、旋转流变仪等设备对复合材料测试分析,研究了不同含量EVA对PP发泡性能及力学性能的影响.结果表明,EVA的加入对PP...  相似文献   

20.
Nylon6 (PA6)/Ethylene-(vinyl acetate) (EVA)/carbon black (CB) composites with different electrical conductivity were prepared in an internal mixer. The factors influencing the electrical conductivity of the ternary composites were investigated, including mixing mode, mixing time and mass ratio of PA6 and EVA, and so on. Among three kinds of PA6/EVA/CB composites, including ones prepared by directly mixing (composites A), EVA and CB were mixed prior to melt-compounding with PA6 (composites B) and PA6 and CB were mixed prior to melt-compounding with EVA (composites C), the mixing time only significantly influenced the electrical conductivity of composites A. Good conductivity of the composites could be realized because the distance between CB particles became closer with the increasing of mixing time. However, the mixing time has no effect on the electrical properties of the composites B and the composites C, due to there were no CB particles migrated phenomenon happened. Scanning electron microscopy (SEM) was used to assess the fracture surface morphologies and the dispersion of the CB particles. The results showed that the dispersion of the CB particles significantly affects the electrical conductivity of the composites. Based on the study of the influence of various mass ratios of EVA and PA6 on the morphologies and electrical properties of PA6/EVA composites filled with 10 phr (parts per hundred resins) CB particles, we suggested that the mass ratio of EVA and PA6 affected the volume resistivity of the ternary composites significantly. In addition, the composites were almost insulation when the mass ratios of EVA and PA6 were 80/20 and 70/30, while the composites became conductivity with the mass ratio of EVA and PA6 higher than 60/40. The PA6/EVA/CB composites which CB particles locate at the interface of EVA and PA6 have the lowest volume resistivity when the mass ratio of two components was 60/40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号