首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 664 毫秒
1.
The kinetics and thermodynamics of water adsorption onto rice husks ash filled polypropene composites during soaking were studied at different temperatures, quantities and nature of fillers. Raw rice husk, “white” and “black” rice husks ash and Aerosil were used as fillers of polypropene. The increase of fillers contents in the polymer matrix was found to result in non-linear increase of the amount of adsorbed water. The highest adsorption capacity showed the samples filled with raw rice husks, while the lowest—those filled with black rice husks ash. The adsorption kinetics was limited by intra-particle diffusion in plane sheet particles. The values of the diffusion coefficients D, diffusion constants D o, activation energy of the diffusion process Е а, changes of free energy ΔG , enthalpy ΔH and entropy ΔS for the formation of the activated complex from the reagent were calculated. A compensation effect between D o and Е а was observed. Based on the Van’t Hoff equation, the values of the changes of standard free energy ΔG o, enthalpy ΔH o and entropy ΔS o of water adsorption were calculated. The sorption process is exothermal in nature and accompanied with decrease of the entropy. The values of the sorption coefficient S and permeability coefficient P were calculated at 25 and 90 °C.  相似文献   

2.
Composite materials were obtained by filling polypropene with raw and thermally treated rice husks at filler contents from 1 to 20%. The physicochemical properties were determined. A slight increase was observed in the tensile strength of the composites based on white rice husk ash (WRHA) and aerosil (AR) at degree of filling up to 3%. Young's modulus increased and the elongation at break and energy to break point showed a tendency to decrease for all the composites studied. The thermodynamics and kinetics of water absorption at immersion were studied in the temperature interval 25–90°C. The values of the changes in standard free energy, ΔG°, enthalpy, ΔH°, and entropy, ΔS° of adsorption were calculated. Water absorption was found to be thermodynamically difficult due to the diffusion mechanism of the process and it was accompanied by a decrease in the values of ΔH° and ΔS° with an increase in fillers contents. The effects of the amount of absorbed water, temperature, and treatment time on the composites tensile properties were estimated.  相似文献   

3.
The reaction rate of enolization of p-chloroacetophenone has been studied in the presence of amino acids, namely, β-alanine, DL-alanine, L-alanine, and glycine. Maximum reaction rate was observed in the case of β-alanine at 22M concentration. The effects of parameters such as effect of ketone concentration, effect of dielectric constant, effect of catalysts, etc., have been found to exert a significant effect on the reaction rate. The effect of temperature was studied in the range of 313–328?K, and several thermodynamic parameters such as entropy (ΔS), enthalpy (ΔH), energy of activation (ΔEa), and Gibbs free energy (ΔF) were found to be ?10.32?e.u., 17.87?cal?mol?1, 19.24?kcal?mol?1, and 21.20?cal?mol?1, respectively. The reaction rate increased from 1.9 to 5.8?min?1 on increasing the percentage of dimethylformamide from 10 to 50% (v/v).  相似文献   

4.
The thermooxidative degradation of methyl methacrylate‐graft‐natural rubber (MG) at different heating rates (B) has been studied with thermogravimetric analysis in an air environment. The results indicate that the thermooxidative degradation of MG in air is a one‐step reaction. The degradation temperatures increase with B. The initial degradation temperature (To) is 0.697B + 350.7; the temperature at the maximum degradation rate, that is, the peak temperature on a differential thermogravimetry curve (Tp), is 0.755B + 368.8; and the final degradation temperature (Tf) is 1.016B + 497.4. The degradation rates at Tp and Tf are not affected by B, and their average values are 46.7 and 99.7%, respectively. The maximum thermooxidative degradation reaction rate, that is, the peak height on a differential thermogravimetry curve (Rp), increases with B. The relationship between B and Rp is Rp = 2.12B + 7.28. The thermooxidative degradation kinetic parameters are calculated with the Doyle model. The reaction energy (E) and frequency factor (A) change with an increasing reaction degree, and the variational trends of the two kinetic parameters are similar. The values of E and A increase remarkably during the initial stage of the reaction, then keep relevantly steady, and finally reach a peak during the last stage. The velocity constants of the thermooxidative degradation vary with the reaction degree and increase with the reaction temperature. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1227–1232, 2003  相似文献   

5.
In this present study, the effect of microwave output power and sample amount on color change kinetics of Turkey okra (Hibiscus esculenta L.) were investigated by using microwave drying technique. The color parameters for the color change of the materials were quantified by Hunter L (whiteness/darkness), a (redness/greenness), and b (yellowness/blueness) values. These values were also used for calculation of the total color change (ΔE), chroma, hue angle and browning index. The microwave drying process changed color parameters of L, a, and b, causing a color shift toward the darker region. The values of L and b decreased, whereas values of a and total color change (ΔE) increased during microwave drying. The mathematical modeling study of color change kinetics showed that L and b fit a first-order kinetic model, whereas a and total color change (ΔE) followed a zero-order kinetic model. However, chroma and browning index (BI) followed a first-order kinetic model, whereas hue angle followed a zero-order kinetic model. On the other hand, the data of the total color change (ΔE), chroma, hue angle, and browning index depending on the ratio of the microwave output power to sample amount were adequately fitted to a quadratic model. For calculation of the activation energy for color change kinetics parameters, the exponential expression based on Arrhenius equation was used.  相似文献   

6.
The chemiluminescent decomposition of functionalized 1,2-dioxetanes was examined in toluene solution. Activation energies were measured by isothermal and nonisothermal kinetic methods. Quantum efficiencies were determined by Stern-Volmer kinetics, using the fluorescers 9,10-dibromo- and 9,10-diphenylanthracene for the triplet and singlet excitation yields. The derivatives of 3-hydroxymethyl-3,4,4-trimethyl-1,2-dioxetane ( 1a ) have free energies of activation (ΔG) of ca. 25 kcal/mol, but the ΔG values of the annelated benzofuran-type dioxetanes ( 5 ) are ca. 1 kcal/mol lower. There exists a reasonable correlation between the free energies of activation (ΔG) for the thermal decomposition of the dioxetanes and their triplet excitation flux (EpT).  相似文献   

7.
BACKGROUND: The removal of heavy metals using adsorption techniques with low cost biosorbents is being extensively investigated. The improved adsorption is essentially due to the pores present in the adsorbent. One way of improving the porosity of the material is by irradiation of the precursor using microwaves. In the present study, the adsorption characteristics of nickel onto microwave‐irradiated rice husks were studied and the process variables were optimized through response surface methodology (RSM). RESULT: The adsorption of nickel onto microwave‐irradiated rice husk (MIRH) was found to be better than that of the raw rice husk (RRH). The kinetics of the adsorption of Ni(II) from aqueous solution onto MIRH was found to follow a pseudo‐second‐order model. Thermodynamic parameters such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were also evaluated. The thermodynamics of Ni(II) adsorption onto MIRH indicates that it is spontaneous and endothermic in nature. The response surface methodology (RSM) was employed to optimize the design parameters for the present process. CONCLUSION: Microwave‐irradiated rice husk was found to be a suitable adsorbent for the removal of nickel(II) ions from aqueous solutions. The adsorption capacity of the rice husk was found to be 1.17 mg g?1. The optimized parameters for the current process were found as follows: adsorbent loading 2.8 g (100 mL)?1; Initial adsorbate concentration 6 mg L?1; adsorption time 210 min.; and adsorption temperature 35 °C. Copyright © 2008 Society of Chemical Industry  相似文献   

8.
ABSTRACT

This study presents the application of fly ash from brown coal and biomass burning power plant as a sorbent for the removal of boron ions from an aqueous solution. The adsorption process efficiency depended on the parameters, such as adsorbent dosage, pH, temperature, agitation time and initial boron concentration. The experimental data fitted well with the Freundlich isotherm model and the maximum capacity was found to be 16.14 mg g?1. The adsorption kinetics followed the pseudo-second-order model. Also, the intra-particle diffusion model parameters were calculated. Thermodynamic parameters such as change in free energy (ΔG°), enthalpy (ΔH°), entropy (ΔS°) revealed on exothermic nature of boron adsorption onto the fly ash.  相似文献   

9.
In the present work, the impact of microwave pretreatment on the thermal degradation of color (chlorophylls) in mustard greens was studied. The drying experiments were conducted in the range of temperatures from 50 to 80°C. The degradation in the levels of chlorophylls has been quantified using Hunter color values (L*, a*, and b*) and calculating total color difference (ΔE). From the color results, the changes in color values (L*, a*, and b*) were observed as inappreciable, and changes in ΔE were found to be increased during drying. Analysis of kinetic data displayed a first-order reaction kinetics for chlorophyll degradation. Arrhenius equation was used to calculate the activation energies for rate constants, and it has been varied from 13.3 to 27.4?kJ/mol. Thermodynamic parameters, enthalpy of activation (ΔH#), and entropy activation (ΔS#) were found to be in the range of 1.40–2.63?J/mol and ?293 to ?305?J/mol?·?K, respectively. The data from the present work revealed that the microwave pretreatment of mustard greens remarkably influenced the retention of chlorophylls in the final dehydrated powder.  相似文献   

10.
Thermal degradation of bisphenol A polycarbonate (PC) has been studied in nitrogen and air from room temperature to 900 °C by high-resolution thermogravimetry (TG) with a variable heating rate in response to changes in the sample's degradation rate. A three-step (in nitrogen) or four-step (in air) degradation process of the PC, which was hardly ever revealed by traditional TG, has been found. The initial thermal degradation temperature of the PC is higher in nitrogen than in air, but the three kinetic parameters (activation energy E, decomposition order n, frequency factor Z) of the major degradation process are slightly lower in nitrogen. The average E, n and lnZ values determined by three methods in nitrogen are 154 KJ mol−1, 0.8 and 21 min−1, respectively, which are almost the same as those calculated by traditional TG measurements. © 1999 Society of Chemical Industry  相似文献   

11.
The thermal degradation behavior of resol, several vegetable fibers (two types of cotton fibers, sisal and sugar cane bagasse) and derived polymer composites have been investigated using thermogravimetric analysis (TGA). The initial thermal degradation temperature TONSET, the temperature at the maximum degradation rate TDM, and the char left at 500°C corresponding to the crosslinked resol were higher than the values measured for the fibers and their composites. Thus, the addition of the fibers reduced the thermal resistance of the phenolic thermoset. The polymer and the fiber‐composites showed a complex degradation involving different thermal decomposition processes. For that reason, the DTG curves were deconvoluted and a phenomenological kinetic expression was found for each individual peak. The overall thermal decomposition curve was recalculated adding each degradation process weighted according to its contribution to the total weight loss. An increase in the activation energy corresponding to the cellulose degradation was observed in the composites, highlighting the protective action of the resin encapsulating the fibers. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
The curing reaction of a system consisting of a purified diglycidyl ether of bisphenol-A (BADGE, n = 0) and 1,2 diamine cyclohexane (DCH) was studied with a differential scanning calorimeter. The objective of this article was twofold: a kinetic study from which parameters such as reaction orders, rate constants, and activation energies were determined; and a thermodynamic study where values of enthalpy (ΔH#), entropy (ΔS#), and Gibbs free energy (ΔG#) changes were calculated. This second study showed that an n-order path reaction mechanism was more favored than the autocatalyzed mechanism above 338 K. This fact was also checked when plotting rate constant ratio against temperature. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 635–641, 1997  相似文献   

13.
The effects of both the rice husk ash (RHA) loading and fumed silica (FS) loading on the structure, thermal stability, and electrical properties of acrylonitrile–butadiene rubber (NBR) composites were studied. The filler loading were chosen to be 5 and 20 phr for RHA and 5 and 30 phr for silica. Also, the effect of the γ‐irradiation dose (25 kGy) on these parameters was investigated. The structure and thermal stability were studied with X‐ray diffraction and thermogravimetric analysis techniques. Furthermore, some electrical parameters, such as the direct‐current electrical conductivity (σdc), activation energy (Ea), dielectric constant (?′), and dielectric loss (?″), were determined. The incorporation of both RHA and FS resulted in improved thermal stability after γ irradiation at 25 kGy. The loading of FS on NBR was shown to decrease σdc, ?′, and ?″ and increase Ea. On the other hand, the loading of RHA showed the opposite trend. Finally, γ irradiation of NBR composites filled with both fillers decreased the values of σdc, ?′, and ?″ for all the samples, which followed the trend for the unirradiated composites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
《分离科学与技术》2012,47(6):1155-1167
Abstract

A kinetic study of Hg(II) transport from an aqueous donor solution into an aqueous acceptor solution through a liquid membrane containing 25,26,27–tribenzoyloxy‐28‐hydroxy‐5,11,17,23‐tetra‐(4‐n‐butylphenylazo)calix[4]arene 1 as a carrier was studied. The kinetic parameters (k 1, k 2, R m max, t max, J d max, J a max) for the transport were investigated in terms of the effect of temperature, the stirring rate, the carrier concentration, and the type of solvent. The kinetics of transport was analyzed in the formalism of two consecutive irreversible first‐order reactions. The membrane entrance rate, and exit rate constants were increased with increasing of temperature stirring rate, and carrier concentration. The membrane entrance rate and exit rate constants depended on the type of solvent and was found to be in order of CH2Cl2> CHCl3> CCl4. The activation energy values are calculated as 30.67±2.64 and 57.33±4.90 kj mol?1 for extraction and reextraction, respectively. The values of calculated activation energy indicate that the process is diffusionally controlled by species.  相似文献   

15.
The thermal degradation of poly[3-dimethyl (methylmethacryloyl)ammonium propanesulfonate], [poly(DMAPS)], was studied under nitrogen and air atmosphere at various heating rates. The kinetic parameters such as activation energy, preexponential factor, and reaction order were determined by Ozawa's method. Thermal degradation of such polymer occurs in two and three stages in nitrogen and air atmosphere, respectively. Larger sample weights produce a larger temperature interval (ΔT), but the weight loss (ΔW) between the temperature of the start and the end of degradation is approximately independent of the sample weights.  相似文献   

16.
In this present study, the effect of microwave output power and sample amount on color change kinetics of Turkey spinach (Spinacia oleracea L.) were investigated by using microwave drying technique. The color parameters for the color change of the materials were quantified by the Hunter L (whiteness/darkness), a (redness/greenness), and b (yellowness/blueness) system. These values were also used for calculation of the total color change (ΔE), chroma, hue angle, and browning index. The microwave drying process changed color parameters of L, a, and b, causing a color shift toward the darker region. The values of L and b decreased, while values of a and total color change (ΔE) increased during microwave drying. The mathematical modeling study of color change kinetic showed that L and b fitted to a first-order kinetic model, while a and total color change (ΔE) followed by a zero-order kinetic model. However, chroma and browning index (BI) followed a first-order kinetic model, while hue angle followed a zero-order kinetic model. To illustrate the relationship of the L, a, b, total color change (ΔE), chroma, hue angle, and browning index depending on the ratio of the microwave output power to sample amount, the data adequately fitted to a quadratic (second order polynomial) model. For calculation of the activation energy for color change kinetic parameters, the exponential expression based on an Arrhenius equation was used.  相似文献   

17.
Thermal degradation of polymethacrylic ester containing bisphenol-S, poly(BPS-M), was investigated under nitrogen and air atmosphere at various heating rates. Ozawa's method was used to calculate the kinetic parameters, activation energy, preexponential factor and reaction order. Thermodegradation of the polymer occurs in one or two stages in nitrogen and air, respectively. The temperature at the start of intense degradation (Tstart) and the temperature corresponding to a 50% mass loss (T50%) were found to be 300 and 402°C, respectively, at a heating rate of 10°C min?1 in nitrogen. Larger sample masses have a larger temperature interval (ΔT) and a greater mass loss (ΔW). The kinetic order of degradation is unity both in nitrogen and air. The direct pyrolysis mass spectrum of the polymer shows one degradation peak. The most important degradation process under inert atmosphere is the loss of carbon dioxide, phenol and sulphur dioxide. A possible mechanism for thermal decomposition of poly(BPS-M) is proposed based on the product analyses.  相似文献   

18.
Nylon 6 fibers were annealed in air at 160°C for periods ranging from 1 to 10 h. Their spectral reflectance values were measured. Color parameters, including luminance factor, dominant wavelength, purity, and the color difference between annealed nylon 6 fiber samples and unheated ones were calculated. The observed variations in the colors of samples were assumed due to the thermal and oxidation degradations. The behavior of the color parameters with heating duration was compared with the general kinetic curve of thermooxidative degradation of polymers and the match between them is discussed. The color difference ΔE values is recommended for monitoring the thermooxidative degradation of nylon 6 fibers. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
An advanced heat‐resistant fiber (trade name Ekonol) spun from a nematic liquid crystalline melt of thermotropic wholly aromatic poly(p‐oxybenzoate‐p,p′‐biphenylene terephthalate) has been subjected to a dynamic thermogravimetry in nitrogen and air. The thermostability of the Ekonol fiber has been studied in detail. The thermal degradation kinetics have been analyzed using six calculating methods including five single heating rate methods and one multiple heating rate method. The multiple heating‐rate method gives activation energy (E), order (n), frequency factor (Z) for the thermal degradation of 314 kJ mol−1, 4.1, 7.02 × 1020 min−1 in nitrogen, and 290 kJ mol−1, 3.0, 1.29 × 1019 min−1 in air, respectively. According to the five single heating rate methods, the average E, n, and Z values for the degradation were 178 kJ mol−1, 2.1, and 1.25 × 1010 min−1 in nitrogen and 138 kJ mol−1, 1.0, and 6.04 × 107 min−1 in air, respectively. The three kinetic parameters are higher in nitrogen than in air from any of the calculating techniques used. The thermostability of the Ekonol fiber is substantially higher in nitrogen than in air, and the decomposition rate in air is higher because oxidation process is occurring and accelerates thermal degradation. The isothermal weight‐loss results predicted based on the nonisothermal kinetic data are in good agreement with those observed experimentally in the literature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1923–1931, 1999  相似文献   

20.
Abstract

Comparative experimental studies were carried out on extraction of copper(II) cations from aqueous acid nitrate media using four LIX‐reagents, representatives of different extractant classes: LIX 984N‐I, LIX 860N, LIX 84‐I and LIX 65N. As a diluent, liquid hydrocarbon undecane was used. The extraction behavior of the LIX‐reagents was compared based on an analysis of the influence of the main factors on the two‐phase mass transfer process: aqueous pH‐value, initial copper and extractant concentrations, and temperature. The experimental data received were used in the calculation of important parameters characterizing the efficiency of copper extraction from nitrate media with different LIX reagents: distribution ratios D, concentration extraction constants K ex, pH0.5‐values, and thermodynamic parameters such as enthalpy, entropy, and free energy changes (ΔH 0, ΔS 0, ΔG 0‐values).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号