首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
高光谱遥感影像以其众多的波段数目,为地表观测提供近乎连续的波谱数据;然而海量的高光谱遥感影像存在着大量的信息冗余,为数据的处理带来了挑战。因此在对高光谱遥感影像进行存储、分析及可视化等操作之前,对高光谱遥感影像降维处理成为预处理的关键环节之一。利用信息熵理论,将高光谱遥感影像的各波段抽象为具有相关性的独立个体,设计了高光谱遥感影像的决策表矩阵,进而计算各波段的信息熵,量化各波段的信息量,从而将各波段根据信息增益进行排序。用户可根据高光谱遥感影像应用的精度需求,按排序选择波段组合,从而达到降维目的。以遥感分类结果的精度评价为例,对高光谱遥感降维方法的可行性和优越性进行评价。实验结果表明,该方法相较其他特征选取降维方法,能获得更高的分类精度。  相似文献   

2.
黄蕾 《遥感信息》2011,(6):37-41
针对高光谱遥感影像数据量大、数据冗余度高的特点,引入拉普拉斯特征映射方法对高光谱遥感数据进行非线性降维。为了解决传统流形学习方法不能处理大数据量遥感影像的问题,本文提出了基于多元线性回归的拉普拉斯特征映射线性解法。实验证明,本文提出的降维方法能够保持数据集在原始特征空间分布的局部几何属性,降维后的影像具有更好的分类精度。  相似文献   

3.
一种新的高光谱遥感图像降维方法   总被引:28,自引:1,他引:28       下载免费PDF全文
高光谱遥感图像的高数据维给图像进一步处理带来了困难,为了解决这一问题,提出了自适应波段选择(ABS)的降维方法。该方法充分考虑了高光谱图像的空间相关性和谱间相关性,通过计算各个波段的指数来选择信息量大并且与其他波段相关性小的波段。对各波段相应的指数重新排列之后,有两种方法来选择最终波段:一种是选择波段指数比设定指数大的波段,另一种方法是选择波段指数排在前n个的所有波段。为了验证ABS方法的有效性,对降维后的高光谱图像进行了贝叶斯监督分类,分类结果表明自适应波段选择的方法能够选择出信息丰富的波段,分类精度与使用原始波段相比提高10.4%,计算复杂度大大降低。  相似文献   

4.
在生物医学信号处理领域,独立分量分析(PCA)和主分量分析(ICA)是两种广泛应用的方法。但是,这两种方法各有其优缺点。提出了一种新颖的方法,将ICA和PCA相结合,通过求相关的技术,分别取ICA和PCA方法的优点。将该方法应用于从母体腹部测得的多通道信号中提取胎儿心电信号的实验,得到令人满意的结果。研究结果表明,这种结合ICA和PCA的方法能够比较准确地分离出所需要的胎儿心电信号,进而可以对胎儿心电进行监护,因此在临床上具有一定的实用价值。  相似文献   

5.
在生物医学信号处理领域,独立分量分析(PCA)和主分量分析(ICA)是两种广泛应用的方法。但是,这两种方法各有其优缺点。提出了一种新颖的方法,将ICA和PCA相结合,通过求相关的技术,分别取ICA和PCA方法的优点。将该方法应用于从母体腹部测得的多通道信号中提取胎儿心电信号的实验,得到令人满意的结果。研究结果表明,这种结合ICA和PCA的方法能够比较准确地分离出所需要的胎儿心电信号,进而可以对胎儿心电进行监护,因此在临床上具有一定的实用价值。  相似文献   

6.
为解决高光谱遥感数据量大且波段间相关性高等问题,提出基于因子分析模型的高光谱数据降维方法。该方法通过因子载荷矩阵求解、模型参数求解、旋转矩阵计算以及因子得分估计,得到表征高光谱图像的本征维数。该方法可以找出少数的几个综合因子来代表众多因子,而这少数几个综合因子不仅能主要反映原来的众多因子的信息,而且彼此独立,从而实现高光谱数据的降维。通过利用航空推扫型成像光谱仪(PHI)数据进行本文方法的性能验证,结果表明,Kappa系数从未降维数据的0.744提高到0.821,满足了得到数据本征维数的同时最大程度的保留  相似文献   

7.
论文提出了一种基于快速独立分量分析的高光谱图像降维算法.利用虚拟维数算法估计需要保留的独立分量数目,采用非监督端元提取算法自动获取端元矢量,并对快速独立分量分析的混合矩阵进行有效初始化.采用最大噪声分离变换对原始数据进行预处理,利用快速独立分量分析从变换后的主分量中依次提取出各端元对应的独立分量,最后对各个独立分量分别实施无损压缩.实验结果表明,该算法降维后的独立分量具有较好的地物分类性能,并且可以获得较好的压缩性能.  相似文献   

8.
基于分段行列2D-PCA的高光谱图像数据降维方法   总被引:1,自引:0,他引:1  
《计算机工程》2017,(9):256-262
针对传统二维主成分分析(2D-PCA)方法不能直接应用于高光谱图像数据降维的不足,提出一种基于分段行列2D-PCA的降维方法。利用高光谱图像波段间的相关系数进行波段子空间划分,在各子空间内通过旋转构建新的数据模型,以2D-PCA方法提取其行、列主成分信息,经过图像重建得到行、列主成分图像,对各波段子空间的行、列主成分图像进行小波分解,按照不同规则融合低频、高频系数,再通过小波逆变换得到降维后的图像。实验结果表明,与PCA和分段PCA方法相比,该方法在保证降维图像质量的前提下可缩短运算时间,提高高光谱图像的降维效率。  相似文献   

9.
刘春  陈燕  辛亮 《遥感信息》2010,(3):13-17
对于海量遥感数据的计算而言,串行运算对计算机性能要求高,而且耗时长。为此本文提出引用并行运算方法,不仅可以降低对计算机性能的要求,还可以大大提高运行和计算速度。为此,首先介绍了基于MPI(Message Passing Interface)的并行运算机制,且以Matlab为例给出了它的并行模式,并详细介绍了将现有串行运算代码改造成并行运算的流程。以海量高光谱影像数据为例,将本征维数估计的串行运算修改为并行运算,实验分析并测试了其运行效率。结果表明,并行计算较串行计算可大大缩短本征维数的计算时间。  相似文献   

10.
林婷  刘湘南  金铭 《计算机工程》2011,37(11):272-274
针对传统的固定点算法对分离矩阵初始值敏感的问题,提出一种改进的独立分量分析(ICA)算法,通过在传统的算法核心迭代过程中加入搜索因子,降低算法对矩阵初始值的依赖,提高处理效率。将ICA算法应用于作物精细光谱的分类,分别利用传统固定点算法和改进的固定点算法对混合光谱进行信息提取与分离。实验证明,改进的ICA算法在与传统算法作物光谱分类效果相当的情况下,迭代次数减少26%,提高了独立分量的分离效率,是一种有效的作物光谱分类方法。  相似文献   

11.
主成分分析(PCA)常常结合JPEG2000压缩标准用来对高光谱图像进行压缩。然而,由PCA得到的主成分仅利用了二阶统计信息。对于高光谱图像应用来说,只采用二阶统计信息是远远不够的,如异常像素的处理常常需要用到更高阶的统计信息。研究了一种混合PCA/ICA与JPEG2000相结合的高光谱图像压缩算法。首先,对原始高光谱图像进行PCA变换,提取出前m个主成分对应的特征向量矩阵WPCA;然后,对其余的特征向量进行ICA变换,得到n个特征向量矩阵WICA;最后,将得到的混合投影矩阵、原始高光谱图像及其均值向量共同嵌入JPEG2000比特流,从而完成对高光谱图像的压缩。在不同码率的情况下,通过空间相关系数(ρ)、信噪比(SNR)、光谱角填图(SAM)等技术指标对混合PCA/ICA+JPEG2000算法的压缩性能进行评估。实验结果表明,混合PCA/ICA+JPEG2000算法不但能有效去除高光谱图像的谱间相关性,而且能够有效提高光谱保真度,保护异常像素信息。  相似文献   

12.
Handling of incomplete data sets using ICA and SOM in data mining   总被引:1,自引:0,他引:1  
Based on independent component analysis (ICA) and self-organizing maps (SOM), this paper proposes an ISOM-DH model for the incomplete data’s handling in data mining. Under these circumstances the data remain dependent and non-Gaussian, this model can make full use of the information of the given data to estimate the missing data and can visualize the handled high-dimensional data. Compared with mixture of principal component analyzers (MPCA), mean method and standard SOM-based fuzzy map model, ISOM-DH model can be applied to more cases, thus performing its superiority. Meanwhile, the correctness and reasonableness of ISOM-DH model is also validated by the experiment carried out in this paper.  相似文献   

13.
结合小波包和ICA的脑电信号特征波提取方法   总被引:1,自引:0,他引:1  
为了更有效地提取脑电信号特征波,结合小波包和ICA(独立分量分析),提出了一种脑电特征波提取方法。首先对脑电信号进行小波包分解,然后进行相关频段信号的重构,从而提取出特征波的概貌作为初次提取的特征波;再利用ICA分离技术,以初次提取的特征波为参考信号对其进行增强。实验结果表明,对比于独立地应用某一种方法,两种方法相结合更能有效地提取脑电信号特征波。  相似文献   

14.
基于ICA与Bayes的判别分析模型   总被引:1,自引:0,他引:1  
简要介绍了Bayes判别分析模型的特点及存在的问题,概括了独立成分分析(ICA)的特点及发展现状,提出了基于ICA与Bayes的判别分析模型--IBD模型.该模型首先利用ICA的方法将相关性数据指标转换为互相独立的数据指标,并通过卡尔曼滤波方式滤去高频数据,有效地去除了噪声,最后利用Bayes方法对转换的数据进行判别分析.实验结果表明,当数据之间存在相关关系时,IBD模型的判别分析效果要优于Bayes与Fisher判别分析模型.  相似文献   

15.
数据降维方法分析与研究 *   总被引:9,自引:0,他引:9  
全面总结现有的数据降维方法,对具有代表性的降维方法进行了系统分类,详细地阐述了典型的降维 方法,并从算法的时间复杂度和优缺点两方面对这些算法进行了深入的分析和比较。最后提出了数据降维中仍 待解决的问题。  相似文献   

16.
针对室外环境下光照亮度变化、阴影和树木遮挡等问题,对利用隐马尔可夫模型进行视频异常事件检测的影响,提出基于独立分量分析(ICA)和HP(Hodrick-Prescott)滤波器的隐马尔可夫模型视频异常事件检测方法。该方法首先利用ICA构造正常视频的特征子空间,将图像序列投影到特征子空间上得到投影序列,实现数据降维;然后利用HP滤波器滤除投影序列中环境变化引起的趋势分量;最终克服不利的环境因素,有效改善隐马尔可夫模型的视频异常事件检测性能。机动车辆禁行路段视频的检测实验表明,该方法能够在复杂的室外环境下较好地检测出异常事件。  相似文献   

17.
基于ICA和NFL分类的局部人脸识别方法   总被引:4,自引:0,他引:4       下载免费PDF全文
目前已存在很多基于统计的人脸整体识别方法,独立元分析方法就是一种基于信号高阶统计特性的方法。但由于人脸光照、姿态、信息缺损等外部不可避免因素会引起整个人脸灰度图像产生很大的变化,因而会对这类整体统计性方法的稳定性产生很大影响。为此提出了一种基于独立元分析和最近邻特征线的局部人脸识别方法。首先,通过对人眼的手工定位并依据人脸几何特征完成对人脸图像的截取和局部分块,从而移除发型等无用信息;然后对每个局部图像进行PCA/ICA特征提取;最后的识别阶段,通过最近邻特征线方法得到各自识别距离,并通过对各部分设置合理的权重来综合判定。实验结果表明,作为一种有效的识别方法,分块独立元方法在识别率、识别的稳定性、应用的灵活性等方面都优于传统的整体识别方法。  相似文献   

18.
本文提出了一种基于独立成分分析(ICA)与改进的可视化诱导自组织映射(MViSOM)的孤立点挖掘模型——IMVOM模型,该模型用ICA方法对观测到的多维随机向量进行独立成分分解,得到一个独立成分数据集,然后用改进的MViSOM方法取得数据的可视化。该模型充分结合“人类擅长于模式识别的能力”与“电脑擅长于大量地记忆、快速地计算的能力”的双方优点进行孤立点的挖掘,避免了对高维数据内部结构的复杂探测,从而克服了高维数据集孤立点挖掘过程中的一些困难。实验结果也验证了所提模型的合理性。  相似文献   

19.
数据挖掘中基于ICA的缺失数据值的估计   总被引:3,自引:3,他引:3  
本文简单介绍了数据挖掘中缺失数据的研究现状及ICA的特点与发展前景,提出了基于ICA的缺失数据估计模型——ICA-MDH模型。该模型研究了数据之间存在相关关系且为非高斯分布时缺失数据的处理方法,该方法能充分利用已知数据记录中的已知信息,且具有较好的通用性。实验通过对一些不完整经济数据进行了处理。结果表明,本文提出的缺失数据估计方法的精度明显优于平均值法和PCAs法,从而验证了本文所提模型的正确性与合理性。  相似文献   

20.
针对人脸识别中,利用粒子群算法训练支持向量机进行分类识别时存在易陷入局部最优和收敛速度慢的问题,提出一种基于雁群优化算法的人脸识别方法。将主成分分析与独立成分分析相结合提取人脸特征,利用支持向量机进行分类,在分类识别的过程中,引入雁群优化算法以提高速度和效率。实验结果表明,与标准粒子群算法相比,改进的粒子群算法提高了人脸识别率,具有较快的识别速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号