首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A synthesis route was successfully established to reliably synthesize the high temperature thermoelectric material REB66 (RE = Y, Sm, Ho, Tm, Yb) much more readily than the typical single crystal growth. Thermoelectric properties of HoB66 and TmB66 are also investigated for the first time. The REB66 samples synthesized by spark plasma sintering showed thermoelectric properties equivalent to those measured on single crystals. A figure of merit ZT around 0.1 at 973 K was obtained with a sharply increasing trend toward higher temperatures. Strikingly, the thermoelectric properties of these compounds appear to be almost independent of the microstructure. The nature of the rare earth does not seem to strongly affect the thermoelectric properties, differences originating mainly from different compositions or the presence of secondary phases. Relatively large negative Curie-Weiss temperatures θ were observed, and an increasing coupling indicated from HoB66 to YbB66. This could be indicative of an unusual coupling mechanism.  相似文献   

2.
Ba2REAlO5 (RE?=?Dy, Er, Yb) powders were synthesized by a solid state reaction method, followed by cold pressing and sintering to produce pellets for hot corrosion tests. When exposed to V2O5?+?Na2SO4 molten salt at 900?°C and 1000?°C for 4?h and 20?h, REVO4, Ba3(VO4) 2 and BaAl2O4 formed as corrosion products due to chemical interactions between the ceramics and the molten salt, which were temperature and time independent. After the hot corrosion tests at 1000?°C, continuous, dense reaction layers with a thickness of ~80?μm formed on the sample surfaces, which had an effective function on suppressing further penetration of the molten salt. The hot corrosion mechanisms of Ba2REAlO5 are proposed based on Lewis acid-base rule, phase diagrams and thermodynamics. From a thermodynamics perspective, the molten salt directly reacting with Ba2REAlO5 is difficult compared with Yb2O3, Al2O3 and BaO.  相似文献   

3.
Yb/Ln (Ln=Er, Tm) doped TeO2-based glasses containing CsPbBr3 perovskite quantum dots were successfully prepared via in-situ glass crystallization. The nanocomposites yield typical green downshifting luminescence attributing to CsPbBr3 exciton recombination under UV excitation, and produce Er3+ green, Er3+ red and Tm3+ blue upconversion emissions under 980 nm laser excitation. Impressively, specific Ln3+ emissions will be quenched with the precipitation of CsPbBr3 in glass, enabling to finely tune upconversion emitting color. Spectroscopic characterizations evidence that the luminescence quenching is originated from non-radiative reabsorption effect induced by the precipitation of CsPbBr3 rather than energy transfers from Ln3+ to CsPbBr3. Finally, these nanocomposites are demonstrated to exhibit superior water resistance due to the effective protecting role of dense structural glass, particularly, about 95% downshifting luminescence of CsPbBr3 and upconversion luminescence of Er3+ related to pristine ones are retained after immersing the products in water up to 30 days.  相似文献   

4.
The influence of substitution of rare-earth ion (RE = Yb, Tm, Er, Y, Ho, Dy, Gd) for B′-site on phase composition, crystal structure, micromorphology, and microwave dielectric properties of Ba4RENb3O12 ceramics are investigated. The results of XRD and Rietveld refinement indicate that the Ba4RENb3O12 ceramic is composed of Ba(RE1/12Nb9/12)O3 and Ba (RE1/2Nb1/2)O3 phases. Porosity analysis shows that the relative density of Ba4RENb3O12 ceramics can reach more than 95.25%. The variations of permittivity and temperature coefficient are associated with ionic polarization and cell polarization, respectively. The A1g Raman‐active modes at 754 cm?1 are oxygen-octahedron stretch vibration, reflecting the variation of the structure. Optimal microwave dielectric properties (εr = 38.75, Q × f = 41251 GHz, τf = 71.57 ppm/°C) of Ba4RENb3O12 ceramics for RE = Yb are obtained at 1425 °C for 6 h.  相似文献   

5.
《Ceramics International》2017,43(15):11944-11952
Hot corrosion behavior of Ba2REAlO5 (RE = Dy, Er, Yb) ceramics exposed to V2O5 molten salt at 900 °C and 1000 °C was investigated, providing a better understanding of their corrosion resistance as promising thermal barrier coatings. Obvious surface reactions occurred forming continuous, dense reaction layers on the top surfaces of the samples, the types of corrosion products being temperature and time independent. After heat treatment for 4 h and 20 h in V2O5 salt at the two temperatures, the corrosion products consisted of REVO4, Ba2REV3O11 and BaAl2O4 (RE = Dy, Er, Yb). Prolonged heat treatment and elevated temperature promoted the growth of Ba2REV3O11 and REVO4 grains. The reaction layer had a positive function on suppressing further penetration of the molten salt. The mechanism by which the corrosion reaction occurs is proposed based on Lewis acid-base rule, phase diagrams and thermodynamics.  相似文献   

6.
A series of Sr2.99-x(PO4)2:.01Er3+/xYb3+ (x = .02, .04, .06, .08, .10) phosphors in the presence of impurity Tm3+ were synthesized by high temperature solid-state method, and X-ray diffraction results show that these samples are pure R-3 m(166) space group phase. The upconversion luminescence (UCL) of Er3+ and impurity Tm3+ under 980-nm laser excitation were investigated, and the results show that the intense blue UCL of impurity Tm3+ and thermal enhancement of 2H11/24I15/2 of Er3+ simultaneously exist. When Er3+ doping concentration is kept at .01, both the blue UCL intensity of impurity Tm3+ and green and red UCL intensity of Er3+ reach the maximum at Yb3+ doping concentration of .08. The thermal enhancement effect of 2H11/24I15/2 of Er3+ was observed as high as 3.27 times from 303 to 723 K, which is because of lattice distortion and phonon-assisted transition. In addition, the optical temperature performance of Sr2.91(PO4)2:.01Er3+/.08Yb3+ sample was studied, and the maximum absolute temperature sensitivity was calculated as .00623 K−1 at 538 K. This study suggests that Sr3(PO4)2:Er3+/Yb3+ phosphors in the presence of impurity Tm3+ have a promising application prospect as optical temperature sensor at high temperature.  相似文献   

7.
The nature of current carriers is revealed and the concentration dependence of the true transport numbers of chlorine ions η is studied by the Tubandt method in glasses of the PbCl2-2PbO · SiO2 system. It is demonstrated that, in glasses containing up to ∼20 mol % PbCl2, the electricity transport occurs through protons and chlorine ions. At [PbCl2] ≥ 20 mol %, the electric current is carried primarily by the chlorine ions. The known crystalline compounds in the PbO-PbCl2 system are synthesized, and the temperature dependences of their electric conductivity are investigated for the first time. It is found that the introduction of PbCl2 into PbO is accompanied, first, by an increase in the electric conductivity (to a PbCl2 mole fraction of ∼0.5), and, then (when PbCl2 single crystals are formed), by its decrease. The temperature-concentration dependence of the electric conductivity for glasses in the PbCl2-2PbO · SiO2 system is interpreted in terms of structural-chemical microinhomogeneity of the glass structure due to the selective interaction of components during the glass synthesis.  相似文献   

8.
Rare-earth (RE) hafnates are promising thermal and environmental barrier coating (TEBC) materials for SiCf/SiC ceramic matrix composites. In this study, pure-phase and dense δ-RE4Hf3O12 (RE = Yb, Lu) bulk ceramics have been fabricated via a hot-pressing method. The crystal structure, microstructure, mechanical, and thermal properties of δ-RE4Hf3O12 were systematically investigated in order to probe their potential application as TEBCs. The high-temperature elastic moduli of δ-Yb4Hf3O12 and δ-Lu4Hf3O12 are measured to be 185 and 188 GPa at 1673 K, respectively, which are over 85% values of room temperature. The coefficients of thermal expansion are 7.64 × 10−6 and 7.46 × 10−6 K−1 for δ-Yb4Hf3O12 and δ-Lu4Hf3O12, respectively. The relatively low coefficient of thermal expansion and thermal conductivity as well as their excellent high-temperature stability endow these hafnates as potential TEBC candidates.  相似文献   

9.
The intrinsic microstructure and crystalline phases of porous SiC ceramics with 5 vol% AlN–RE2O3 (RE = Sc, Y, Lu) additives were characterized by high-resolution transmission microscopy with energy-dispersive spectroscopy and X-ray diffraction. The homophase (SiC/SiC) and heterophase (SiC/junction) boundaries were found to be clean; that is, amorphous films were not observed in the specimens. In addition, ScN, YN, and LuN were formed as secondary phases. The flexural strength and thermal conductivity of the ceramics were successfully tuned using different additive compositions. The flexural strength of the ceramics improved by a factor of ~3, from 11.7 MPa for the specimen containing Y2O3 to 34.2 MPa for that containing Sc2O3, owing to the formation of a wide necking area between SiC grains. For the same reason, the thermal conductivity improved by ~56%, from 9.2 W·m?1·K?1 for the specimen containing Lu2O3 to 14.4 W·m?1·K?1 for that containing Sc2O3.  相似文献   

10.
In this work, we synthesized the core-shell structure citric acid-modified up-conversion luminescent nanoparticles (Cit-NaYF4:Yb,Tm) (denoted as UC)@ polymer of phenol-formaldehyde resin (PFR) particles. Ag nanoparticles were successfully loaded onto the PFR's shell by direct reduction of AgNO3 in situ with rich hydroxyl groups in PFR and a new application of the UC@PFR@Ag composites for detection of S2− was investigated. A good linear relationship between the fluorescence intensity of as-synthesis of UC@PFR@Ag composites and the concentration of S2− could be found within the range of 2–100 nM (R2 = 0.9929) with a limit of detection of 0.67 nM. The values of S2− content in actual water samples obtained with the proposed method are much closer to unity as compared to the corresponding values obtained with the UV method.  相似文献   

11.
The oxidation behaviour of pressureless liquid-phase-sintered (PLPS) α-SiC was investigated as a function of the sintering additives of 5Al2O3 + 3RE2O3 (RE = La, Nd, Y, Er, Tm, or Yb) by thermogravimetry experiments in oxygen at 1075–1400 °C for up to 22 h. It was found that the oxidation is in all cases passive and protective, with kinetics governed by the arctan-rate law. This is because the PLPS SiC ceramics develop oxide scales having no cracks or open porosity and accordingly prevent the parent material from direct contact with oxygen. In addition, these oxide scales crystallize gradually during the exposure to the oxidizing atmosphere with the attendant reduction in the amorphous cross-section available for oxygen diffusion. It was also found that the rate-limiting mechanism of the oxidation is outward diffusion of RE3+ cations from the intergranular phase into the oxide scale, and that the activation energy of the oxidation increases with increasing size of the RE3+ cation. It was also observed that the oxidation of PLPS SiC increases with increasing size of the RE3+ cation, an effect that is especially marked for cation sizes above 0.9 Å because the oxidation rate becomes several orders of magnitude faster. This trend is attributable to the oxide scales being more crystalline, and containing crystals that are more refractory and amorphous residual phases that are more viscous as the size of the RE3+ cation decreases. Finally, implications for the design of PLPS SiC ceramics with superior oxidation resistance are discussed.  相似文献   

12.
New heteronuclear (NH4)REIII[FeII(CN)6nH2O complexes (RE = La, Ce, Pr, Nd, Sm, Gd, Dy, Y, Er, Lu) were synthesized and their thermal decomposition products were investigated. The crystal structure of (NH4)RE[FeII(CN)6nH2O would be a hexagonal unit cell (space group: P63/m), which was the same as that of La[FeIII(CN)6]·5H2O. The hydration number n = 4 was estimated by TG results for all the RE complexes. The lattice constants depended on the ionic radius of the RE3+ ion for the heteronuclear complexes. The single phase of the perovskite type materials was directly obtained by decomposition of the heteronuclear complexes for RE = La, Pr, Nd, Sm, and Gd. A mixture of CeO2 and Fe2O3 was formed for RE = Ce because of its oxidation to Ce4+. In the case of RE = Dy, Y, Er, and Lu complexes, the perovskite type materials formed at higher temperature via. mixed oxides such as RE2O3 and RE4Fe5O13 due to the small RE3+ ionic radius.  相似文献   

13.
Cobalt chromite based pigments CoCr2–xLnxO4 (Ln?=?Tm3+ and Yb3+) with different substitutional level of lanthanide (x?=?0–0.5) have been synthesized using aqueous sol–gel synthetic approach. The XRD analysis revealed that single phase spinel was obtained only with low content of lanthanide ions (x?=?0.01–0.04). The sol–gel derived powders with higher concentration of lanthanide (x?=?0.05–0.2) contained minor amount of orthochromite phase. At the highest substitutional level (x?≥?0.2) the perovskite phase became the main crystalline phase. The colour of obtained pigments and corresponding ceramic glazes were analogous. Depending on the dominant phase, the colour varied from bluish-green (prevailing spinel phase) to dark brownish green (the main perovskite phase). This study proved that the replacement of chromium ions by thulium and ytterbium was successful at low content of lanthanides influencing the shade of pigment and corresponding glazes.  相似文献   

14.
Structurally stable β-Ca3(PO4)2/t-ZrO2 composite mixtures with the aid of Dy3+ stabilizer were accomplished at 1500°C. The precursors comprising Ca2+, P5+, Zr4+, and Dy3+ have been varied to obtain five different combinations. The results revealed the fact that complete phase transformation of calcium-deficient apatite to β-Ca3(PO4)2 occurred only at 1300°C, whereas the evidence of t-ZrO2 crystallization is obvious at 900°C. The dual occupancy of Dy3+ at β-Ca3(PO4)2 and t-ZrO2 structures was evident; however, Dy3+ initially prefers to occupy β-Ca3(PO4)2 lattice until its saturation limit and thereafter accommodates at the lattice site of ZrO2. The typical absorption and emission behavior of Dy3+ were noticed in all the systems and, moreover, the surrounding symmetry of Dy3+ domains has been determined from the luminescence study. All the systems ensured paramagnetic response that is generally contributed by the presence of Dy3+. A gradual increment in the phase content of t-ZrO2 in the composite mixtures ensured a significant improvement in the hardness and Young's modulus of the investigated compositions.  相似文献   

15.
Raman spectra of melts in the Na2O–P2O5–SiO2system are measured at high temperatures. The differences between the Raman spectra of melts and glasses with identical compositions are considered. It is demonstrated that the structural inhomogeneity of the system slightly increases with a decrease in temperature and vitrification of the melt.  相似文献   

16.
Ho2O3 and Tm2O3 doped Bi2O3 composite electrolyte type materials for solid oxide fuel cells (SOFCs) operating at intermediate-temperature were investigated. The bismuth-based ceramic powders were produced by using conventional solid-state synthesis techniques. The products were characterized by means of scanning electron microscopy (SEM), X-ray powder diffraction (XRD), differential thermal analysis/thermal gravimetry (DTA/TG), and the four-point probe technique (4PPT). XRD and DTA/TG measurements indicate that all of the samples have the stable fluorite type face centered cubic (fcc) δ-phase. 4PPT measurements were performed in the temperature range 150–1000 °C in air and these measurements showed that the electrical conductivity of the samples decrease with increasing amount of Tm2O3. This increase in the electrical conductivity of the samples could be attributed to the increase in the numbers of highly polarizable cations and oxide ion vacancies. The highest conductivity value was found as 5.31×10?1 Ω cm?1 for the (Bi2O3)1?x?y(Ho2O3)x(Tm2O3)y ternary system (for x=20 and y=5 mol%) at 1000 °C. The activation energies of the samples were calculated from log σ graphics versus 1000/T. These calculated results showed that the translation motion of the charge carriers, oxygen vacancies, and space charge polarizations are responsible for the change in activation energy as a function of temperature.  相似文献   

17.
Compositions in the ZrO2–Y2O3–Ta2O5 system are of interest as low thermal conductivity, fracture resistant oxides for the next generation thermal barrier coatings (TBC). Multiple phases occur in the system offering the opportunity to compare the thermal properties of single, two-phase, and three-phase materials. Despite rather large variations in compositions almost all the solid solution compounds had rather similar thermal conductivities and, furthermore, exhibited only relatively small variations with temperature up to 1000 °C. These characteristics are attributed to the extensive mass disorder in all the compounds and, in turn, small interfacial Kapitza (thermal) resistances. More complicated behavior, associated with the transformation from the tetragonal to monoclinic phase, occurs on long-term annealing in air of some of the compositions. However, the phases in two of the compositional regions do not change with annealing in air and their thermal conductivities remain unchanged suggesting they may be suitable for further exploration as thermally stable TBC overcoats.  相似文献   

18.
《Ceramics International》2022,48(6):7677-7686
The composition of lithium aluminosilicate (LAS) with different zinc oxide-magnesium oxide (ZnO–MgO) contents that ranged from 0 to 1.45 wt percent (wt%) was investigated to determine the thermal shock resistance properties of the glass-ceramics. The LAS glasses were melted in an alumina crucible at 1550 °C for 5 h, and the green compact samples were then heat-treated at 1100 °C for 3.5 h. The presence of zinc oxide (ZnO) in the compositions did not change the major crystal phase of β-spodumene. However, the addition of ZnO shifted the pronounced peak to a lower angle and increased the percentage of crystallinity from 55% to 59%. Additionally, the function of ZnO in LAS glass-ceramics as the network modifier was confirmed through Fourier Transform Infrared Spectroscopy (FTIR) analysis. The physio-mechanical properties were improved when 1.45 wt% ZnO was added to the LAS glass-ceramics. The results showed increased density (2.42 g/cm3), low porosity (0.85%), high flexural strength (125.23 MPa), and low coefficient of thermal expansion (25–800 °C) (CTE(25–800 °C)) value of 1.73 × 10?6 °C?1. Meanwhile, the thermal shock resistance properties evaluation of the LAS glass-ceramics at different ZnO contents were conducted at different thermal shock temperatures of 200 °C, 500 °C, and 800 °C. The critical temperature of the LAS specimens with 1.45 wt% ZnO demonstrated the ability to withstand a thermal shock at 800 °C while preserving 87% of their initial strength of 108.40 MPa, exemplifying the best LAS glass-ceramics properties for rapid high-temperature change applications.  相似文献   

19.
《Ceramics International》2023,49(3):4872-4880
CaO–B2O3–SiO2–Ta2O5 (CBST) glass-ceramics, with different Ta2O5 content, (up to 6 mol%), have been prepared by using glass melt quenching followed by heat treatment between 800 and 880 °C. The Fourier Transform Infrared (FTIR) results showed that the stronger the attraction of Ta5+ to the oxygens in the BO33? and SiO32? structures, the more easily the B–O and Si–O bonds will be destroyed. The underlying reason is most probably the high field strength of Ta5+, which results in a weakening of the vibration intensities of the [BO3] and [SiO4] units. Moreover, the Differential Scanning Calorimetry (DSC) results showed that the softening point (Tg), crystallization starting temperature (Tc1), and exothermic crystallization peak temperature (Tp1), of the CaSiO3 phase, shifted to higher values with the addition of Ta2O5. Also, the crystallization activation energy (Ea) and the glass stability factor (ΔT) of the CaSiO3 phase increased, which indicated that the CaSiO3 phase of the glass became inhibited by the addition of Ta2O5. It was, thus, obvious that there was a need of glass characterization. The results of the crystallization kinetics showed that the critical cooling rate decreased with the addition of Ta2O5, which indicated that the viscosity of the system had increased. The CBST glass-ceramics, containing 1 mol% Ta2O5, that were sintered at 875 °C for 15 min showed excellent dielectric properties: εr = 6.22 and tanδ = 1.19 × 10?3 (1 MHz). To sum up, CaO–B2O3–SiO2–Ta2O5 glass-ceramics are potential low temperature co-fired ceramic substrate materials.  相似文献   

20.
A novel tri-layer (Gd0.9Yb0.1)2Zr2O7/Yb2SiO5/Si (GYbZ/YbMS/Si) thermal and environmental barrier coatings (TEBCs) was first proposed for protecting SiC-based ceramic matrix composites (CMCs). Wherein, the GYbZ layer by plasma spray physical vapor deposition (PS-PVD) was quasi-columnar structured while the YbMS and the Si layers by atmospheric plasma spray (APS) were lamellar structured. The oxidation behavior and the failure mechanisms of the GYbZ/YbMS/Si TEBCs at 1300 °C/1400 °C are revealed. At 1300 °C, the mud-cracks penetrated through the GYbZ/YbMS layer and transversely deflected in the Si layer are responsible for the oxidation at YbMS/Si interface. When the temperature increased to 1400 °C, the propagation of mud-cracks, cavities, and TGO channel cracks occurred due to the sintering of GYbZ and the fast growth of cristobalite. Eventually, these defects caused delaminating failure at interface. Moreover, another de-bonding failure of the coating was observed resulting from the significant thickening of oxide scale at the edge region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号