首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2022,48(18):25940-25948
Aiming to offer a high-performance Co-free cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs), a series of La0.8Sr0.2Fe1-xCuxO3-δ (LSFCux, x = 0.0–0.3) nanofiber cathodes were synthesized by the electrospinning method. The effects of various Cu doping amounts on the crystal structure, fiber morphology, and electrochemical performance of LSF nanofiber cathode materials were investigated. The results indicate that after being calcined at 800 °C for 2 h, the perovskite structure samples with a high degree of crystallinity are obtained. The morphology of electrospun nanofibers is continuous, and the average diameter of nanofibers is about 110 nm. In addition, the La0.8Sr0.2Fe0.8Cu0.2O3-δ (LSFCu2) fiber cathode displays the optimal electrochemical performance, and the polarization resistance (Rp) is 0.674 Ω cm2 at 650 °C. The doping of Cu transforms the main control step of the low-frequency band from dissociation of oxygen molecules to charge transfer on the electrode, and the maximum power density (Pm) of the Ni-SDC/SDC/LSFCu2 single cell reaches 362 mW cm-2 at 650 °C.  相似文献   

2.
Lanthanum-based iron- and cobalt-containing perovskite has a high potential as a cathode material because of its high electro-catalytic activity at a relatively low operating temperature in solid oxide fuel cells (SOFCs) (600–800). To enhance the electro-catalytic reduction of oxidants on La0.6Sr0.4Co0.2Fe0.8O3?δ (LSCF), Ga doped ceria (Ce0.9Gd0.1O1.95, GDC) supported LSCF (15LSCF/GDC) is successfully fabricated using an impregnation method with a ratio of 15 wt% LSCF and 85 wt% GDC. The cathodic polarization resistances of 15LSCF/GDC are 0.015 Ω cm2, 0.03 Ω cm2, 0.11 Ω cm2, and 0.37 Ω cm2 at 800 °C, 750 °C, 700 °C, and 650 °C, respectively. The simply mixed composite cathode with LSCF and GDC of the same compositions shows 0.05 Ω cm2, 0.2 Ω cm2, 0.56 Ω cm2, and 1.20 Ω cm2 at 800 °C, 750 °C, 700 °C, and 650 °C, respectively. The fuel cell performance of the SOFC with 15LSCF/GDC shows maximum power densities of 1.45 W cm?2, 1.2 W cm?2, and 0.8 W cm?2 at 780 °C, 730 °C, and 680 °C, respectively. GDC supported LSCF (15LSCF/GDC) shows a higher fuel cell performance with small compositions of LSCF due to the extension of triple phase boundaries and effective building of an electronic path.  相似文献   

3.
La0.58Sr0.4Co0.2Fe0.8O3?δ–Ce0.8Gd0.2O2 (LSCF–GDC) composite cathodes with various weight ratios 90%, 70% and 50% of LSCF were prepared. Mechanical properties, thermal expansion properties and electrical properties were measured for potential applications in solid oxide fuel cells (SOFCs) with graded cathodes. LSCF and GDC as pure cathode and electrolyte materials were characterized as reference. The absence of new phases as confirmed by X-ray diffraction (XRD) analysis demonstrated the excellent compatibility between the cathode and electrolyte materials. Mechanical properties such as hardness and fracture toughness were measured by the micro-indentation technique, while hardness and elastic modulus were measured by the nano-indentation technique. Thermal expansion behavior was recorded by a dilatometer. Electrical conductivity was measured by the four probe DC method. The 50% LSCF–GDC composite has the lowest relative density among all the samples. Thermal expansion coefficients (TECs) and electrical conductivity increased with addition of LSCF contents in the composite, while mechanical properties depended more on the density than the LSCF content.  相似文献   

4.
《Ceramics International》2023,49(19):31569-31575
In this work, (La0.6Sr0.4)0.9Fe0.8Ni0.2O3-δ (LSFN90), a stable, highly ORR-active and cost-efficient perovskite oxide, is developed as cathode materials for solid oxide fuel cell (SOFC). The introduction of A-site deficiency results in the crystal expansion of the cubic perovskite phase and an increase in oxygen vacancy concentration at operating temperature. The LSFN90 cathode displays good oxygen reduction reaction activity and low polarization resistance values. The A-site deficiency facilitates the diffusion of oxygen ions in the electrode and accelerates the surface oxygen exchange reaction. LSFN90 is used as cathode materials for SOFC to prepare anode-supported single cells, achieving maximum power densities of 1.51, 1.27, 0.95 and 0.63 W cm−2 under wet hydrogen (3%H2O–97%H2) atmosphere at 850, 800, 750 and 700 °C, respectively. The introduction of A-site deficiency can greatly enhance the oxygen reduction reaction activity and electrochemical performance of the cathode, demonstrating that LSFN90 has significant potential as a cathode material for practical applications in solid oxide fuel cells.  相似文献   

5.
In this study, perovskite La0.8-xBixSr0.2FeO3-δ (LBSF, x = 0.0–0.5) nanofibers with great crystallinity were prepared by electrospinning method and used as cathodes for intermediate temperature solid oxide fuel cells (IT-SOFCs). The symmetric cells of nanofiber-based LBSF electrode on Sm0.2Ce0.8O1.9 (SDC) electrolyte show excellent electrochemical performance. The La0.4Bi0.4Sr0.2FeO3-δ (LBSF4) cathode has the best performance with a polarization resistance (RP) of 0.126 Ω cm2 at 650 °C. The anode-supported single cell with LBSF4 as the cathode film and Ni-SDC as the anode has a maximum power density of 448 mW cm-2 at 650 °C using wet H2 as the fuel. In addition, the LBSF4 cathode with fibrous structure exhibits outstanding electrochemical behavior. The catalytic activity of the cathode was improved due to the incorporation of the Bi element, indicating that LBSF4 is promising as a cathode material in the field of IT-SOFCs.  相似文献   

6.
This study reports the successful preparation of a single-phase cubic (Ba0.5Sr0.5)0.8La0.2CoO3?δ perovskite by the citrate–EDTA complexing method. Its crystal structure, thermogravimetry, coefficient of thermal expansion, electric conductivity, and electrochemical performance were investigated to determine its suitability as a cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Its coefficient of thermal expansion shows abnormal expansion at 300 °C, which is associated with the loss of lattice oxygen. The maximum conductivity of a (Ba0.5Sr0.5)0.8La0.2CoO3?δ electrode is 689 S/cm at 300 °C. Above 300 °C, the electronic conductivity of (Ba0.5Sr0.5)0.8La0.2CoO3?δ decreases due to the formation of oxygen vacancies. The charge-transfer resistance and gas phase diffusion resistance of a (Ba0.5Sr0.5)0.8La0.2CoO3?δ–Ce0.8Sm0.2O1.9 composite cathode are 0.045 Ω cm2 and 0.28 Ω cm2, respectively, at 750 °C.  相似文献   

7.
《Ceramics International》2015,41(4):5984-5991
The application of the La2NiO4+δ (LNO), one of the Ruddlesden–Popper series materials, as a cathode material for intermediate temperature solid oxide fuel cells is investigated in detail. LNO is synthesized via a complex method using ethylenediaminetetraacetic acid (EDTA) and citric acid. The effect of the calcination temperature of the LNO powder and the sintering temperature of the LNO cathode layer on the anode-supported cell, Ni–YSZ/YSZ/GDC/LNO, is characterized in view of the charge transfer resistance and the mass transfer resistance. Charge transfer resistance was not significantly affected by calcination and sintering temperature when the sintering temperature was not lower than the calcination temperature. Mass transfer resistance was primarily governed by the sintering temperature. The unit cell with the LNO cathode sintered at 1100 °C with 900 °C-calcined powder presented the lowest polarization resistance for all the measured temperatures and exhibited the highest fuel cell performances, with values of 1.25, 0.815, 0.485, and 0.263 W cm−2 for temperatures of 800, 750, 700, and 650 °C, respectively.  相似文献   

8.
The key issue that limits the electrochemical performance of proton-conducting solid oxide fuel cells (H+-SOFCs) is the sluggish kinetics of the oxygen reduction reaction (ORR) of cathode at intermediate and low temperatures. Herein, oxygen vacancy engineering is conducted on cobalt-free Ba0.95La0.05FeO3?δ (BLF) by nickel substitution, which is confirmed by density functional theory computations. Nickel-substituted BLF material (Ba0.95La0.05Fe1?xNixO3?δ (x = 0, 0.1, 0.2, 0.3)) can promote the generation of oxygen vacancies and improve catalytic activity, which is found to be in line with the experimental results of XPS. The phase structure, microstructure, and electrochemical performance of Ba0.95La0.05Fe0.8Ni0.2O3?δ (BLFNi0.2) are well-investigated. The single cells with the BLFNi0.2-BaCe0.7Zr0.1Y0.1Yb0.1O3?δ (BCZYYb) composite cathode achieve low polarization resistance (Rp) of 0.099 Ω cm2 and a peak power density of 631 mW cm?2 at 700 °C while maintaining good durability for 120 h with no observable degradation. The results demonstrate that Ni-doped BLF is a promising cobalt-free cathode material for H+-SOFCs.  相似文献   

9.
《Ceramics International》2016,42(13):14614-14617
The present study investigates the mechanical behaviour of ferroelastic La0.6Sr0.4Co0.2Fe0.8O3−δ with porosity ranging from 0.9% to 26.1% under uniaxial compression at room temperature. Both dense and porous samples have ferroelastic domains and exhibit ferroelastic mechanical behaviour. The apparent modulus, compressive strength and critical stress of the material dramatically decrease with increasing porosity, exhibiting exponential relationships. Comparison of the mechanical behaviours of samples with similar porosity but different porous structures reveals that the ferroelastic mechanical behaviour depends not only on porosity but also structural factors such as pore size and distribution.  相似文献   

10.
Infiltration is a method, which can be applied for the electrode preparation. In this paper oxygen electrode is prepared solely by the infiltration of La0.6Sr0.4Co0.2Fe0.8O3‐δ (LSCF) into Ce0.8Gd0.2O2-δ (CGO) backbone. The use a polymer precursor as an infiltrating medium, instead of an aqueous nitrate salts solution is presented. It is shown that the polymer forms the single-phase perovskite at 600 °C, contrary to the nitrates solution. As a result, obtained area specific resistance (ASR) is lowered from 0.21 Ω cm2 to 0.16 Ω cm2 at 600 °C. More than 35% of LSCF in the oxygen electrode decreases the performance.  相似文献   

11.
《Ceramics International》2017,43(14):10960-10966
In this research, nanofiber-structured Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ (PSCFN) electrode scaffolds were impregnated with Gd0.2Ce0.8O1.9 (GDC) nanoparticles to prepare PSCFN-GDC nanofiber-structured composite electrodes, which could function well as a novel electrode material for symmetrical solid oxide fuel cells (SSOFCs). The polarization resistances of PSCFN-GDC (1:0.56) composite electrodes as cathode and anode were 0.044 and 0.309 Ω cm2 at 800 °C, respectively, indicating that the composite electrodes demonstrated excellent electrochemical performances for both oxygen reductions and fuel oxidation reactions. La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) electrolyte-supported single cells with the PSCFN-GDC symmetrical composite electrodes showed excellent long-term stability in wet H2 (97% H2-3% H2O) and wet CH4 (97% CH4-3% H2O) for 100 h with constant current density at 800 °C. A conversion electrode method was applied by interchanging the atmosphere of cathode and anode to solve the problem of PSCFN-GDC symmetrical single cell's carbon deposition in wet CH4. After working three cycles for 384 h, carbon deposition was not found in the symmetrical electrode scaffold. Taken together, the results described above demonstrated that the PSCFN-GDC composite material acted as a promising symmetrical electrode for SSOFCs, and the conversion electrode method would make for a good application to process carbon deposition generated by hydrocarbon fuels.  相似文献   

12.
《Ceramics International》2016,42(10):11907-11912
Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3−δ (PSCFN) nanofibers and their corresponding Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3−δ–Gd0.2Ce0.8O1.9 (PSCFN–GDC) composites have been synthesized and applied as cathodes for intermediate temperature solid oxide fuel cells (IT-SOFCs). In this paper, PSCFN nanofibers were obtained through electro-spinning and the following pyrolysis process. The resultant PSCFN nanofibers were infiltrated with GDC precursor to prepare nanofiber-structured PSCFN–GDC composite cathodes. The optimal PSCFN: GDC mass ratio of 1: 0.10 was identified to possess the lowest interfacial polarization resistances of 0.264, 0.155, 0.039 and 0.018 Ω cm2 at 650, 700, 750 and 800 °C, respectively, lower than those of the PSCFN–GDC nanoparticle-structured composite cathode. The PSCFN–GDC (1: 0.10) shows an excellent stability of electrochemical activity under a current density of 200 mA cm−2 for 100 h at 800 °C. All results proved that the nanofiber-structured PSCFN–GDC composite could act as a highly efficient cathode candidate for the IT-SOFCs.  相似文献   

13.
《Ceramics International》2023,49(4):5687-5699
As a potential cathode material for solid oxide fuel cells, the commercial application of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) has to face the challenges in insufficient oxygen reduction reaction (ORR) activity, segregation of Sr element, and CO2 poisoning. Therefore, the effect of A-site non-stoichiometry on the electrochemical performance of (LS)1-xCFs (x = ?0.05, 0, 0.05, 0.10, 0.15) from the aspect of microstructure/elemental surface chemical environment evolution is investigated in this paper. The results show that (LS)0.90CF has the best ORR activity and the highest electrochemical performance. The excellent electrochemical performance is attributed to the (LS)0.90CF/Co2FeO4/CoFe2O4-type heterostructure, formed by in-situ segregation induced by A-site defects, which improves the surface oxygen diffusion coefficient and chemical bulk diffusion coefficient of the cathode. At the same time, the A-site defect can effectively inhibit the segregation of Sr element in (LS)0.90CF, thereby improving the tolerance of CO2. At 800 °C, the area-specific resistance (ASR) of (LS)0.90CF (0.023 Ω cm2) is 66.7% lower than that of LSCF (0.069 Ω cm2), and the peak power density (1.57 Wcm?2) is 1.8 times higher than that of LSCF (0.87 Wcm?2). Therefore, perovskite A-site defect-induced B-site segregation to form heterostructures provides an effective strategy for the preparation of high-performance cathode materials.  相似文献   

14.
《Ceramics International》2017,43(5):4647-4654
Thermogravimetry, phase formation, microstructural evolution, specific surface area, and electrical properties of La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) cathode were studied as functions of its preparation technique. The pure perovskite LSCF cathode powder was synthesized through glycine–nitrate process (GNP) using microwave heating technique. Compared with conventional heating technique, microwave heating allows the rapid combustion to occur simultaneously between the nitrates and glycine in a controllable manner. The resulting powder is a single-phase nanocrystallite with a mean particle size of 113 nm and a high specific surface area of 12.2 m2/g, after calcination at 800 °C. Impedance analysis indicates that microwave heating has significantly reduced the polarization resistance of LSCF cathode. The area specific resistance (ASR) value of 0.059 and 0.097 Ω cm2 at 800 °C and 750 °C, respectively, were observed. These values were twofold lower than the corresponding ASR of the cathode (0.133 and 0.259 Ω cm2 at 800 °C and 750 °C, respectively) prepared through conventional heating. Results suggest that the microwave heating GNP strongly contributes to the enhancement of the LSCF cathode performance for intermediate temperature solid oxide fuel cells.  相似文献   

15.
In this study, the effects of Cu-ion substitution on the densification, microstructure, and physical properties of LaCo0.4Ni0.6-xCuxO3-δ ceramics were investigated. The results indicate that doping with Cu ions not only enhances the densification but also promotes the grain growth of LaCo0.4Ni0.6-xCuxO3-δ ceramics. The Cu substitution at x  0.2 can suppress the formation of La4Ni3O10, while the excess Cu triggers the formation of La2CuO4.032 phase. The p-type conduction of LaCo0.4Ni0.6O3-δ ceramic was significantly raised by Cu substitution because the acceptor doping (CuNi') triggered the formation of hole carriers; this effect was maximized in the case of LaCo0.4Ni0.4Cu0.2O3-δ composition (1480 S cm?1 at 500 °C). Thermogravimetric data revealed a slight weight increase of 0.29% for LaCo0.4Ni0.4Cu0.2O3-δ compact up to 871 °C; this is due to the incorporation of oxygen that creates metal vacancies and additional h?carriers, partially compensating the conductivity loss due to the spin-disorder scattering. As the temperature of the LaCo0.4Ni0.4Cu0.2O3-δ compacts rose above 871 °C, significant weight loss with temperature was observed because of the release of lattice oxygen to the ambient air as a result of Co (IV) thermal reduction accompanied by the formation of oxygen vacancies. A solid oxide fuel cell (SOFC) single cell with Sm0.2Ce0.8O2-δ (electrolyte) and LaCo0.4Ni0.4Cu0.2O3-δ (cathode) was built and characterized. The Ohmic (0.256 Ω cm2) and polarization (0.434 Ω cm2) resistances of the single cell at 700 °C were determined; and the maximum power density was 0.535 W cm?2. These results show that LaCo0.4Ni0.4Cu0.2O3-δ is a very promising cathode material for SOFC applications.  相似文献   

16.
Nanoperovskite oxides, Ba0.2Sr0.8Co0.8Fe0.2O3?δ (BSCF), were synthesized via the co-precipitation method using Ba, Sr, Co, and Fe nitrates as precursors. Next, half cells were fabricated by painting BSCF thin film on Sm0.2Ce0.8Ox (samarium doped ceria, SDC) electrolyte pellets. X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical impedance spectroscopy (EIS) measurements were carried out on the BSCF powders and pellets obtained after sintering at 900 °C. Investigations revealed that single-phase perovskites with cubic structure was obtained in this study. The impedance spectra for BSCF/SDC/BSCF cells were measured to obtain the interfacial area specific resistances (ASR) at several operating temperatures. The lowest values of ASR were found to be 0.19 Ω cm2, 0.14 Ω cm2 0.10 cm2, 0.09 Ω cm2 and 0.07 Ω cm2 at operating temperatures of 600 °C, 650 °C, 700 °C, 750 °C and 800 °C, respectively. The highest conductivity was found for cells sintered at 900 °C with an electrical conductivity of 153 S cm?1 in air at operating temperature of 700 °C.  相似文献   

17.
《Ceramics International》2017,43(10):7929-7934
Sc-substituted La0.6Sr0.4FeO3-δ (LSFSc) has been synthesized for utilization as an integrated ceramic interconnector of tubular-solid oxide cells (SOCs). Redox stability and electric conductivity of LSFSc were improved by optimizing the scandium (Sc) doping concentration, the pH of the synthetic solutions and the calcination temperature of the organic precursors. The crystalline phases of LSFSc were stable when the pH of the synthetic solution was below 2 and the calcination temperature was over 1200 °C. As the Sc concentration increased, redox stability was improved while the electrical conductivity decreased. To consider the trade-off relationship between electrical conductivity and phase stability, La0.6Sr0.4Fe0.9Sc0.1O3-δ can be considered as one of the stable compositions for an integrated ceramic interconnector of tubular-SOCs.  相似文献   

18.
19.
Advanced oxygen transport membrane designs consist of a thin functional layer supported by a porous substrate material that carries mechanical loads. Creep deformation behavior is to be assessed to warrant a long-term reliable operation at elevated temperatures. Aiming towards an asymmetric composite, the current study reports and compares the creep behavior of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) perovskite porous substrate material with different porosity and pore structures in air for a temperature range of 800–1000?°C. A porosity and pore structure independent average stress exponent and activation energy are derived from the deformation data, both being representative for the LSCF material. To investigate the structural stability of the dense layer in an asymmetric membrane, sandwich samples of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) with porous substrate and dense layers on both side were tested by three-point bending with respect to creep rupture behavior of the dense layer. Creep rupture cracks were observed in the tensile surface of BSCF, but not in the case of LSCF.  相似文献   

20.
A perovskite-type (Ba0.5Sr0.5)0.85Gd0.15Co0.8Fe0.2O3?δ (BSGCF) oxide has been investigated as the cathode of intermediate temperature solid oxide fuel cells (IT-SOFCs). Coulometric titration, thermogravimetry analysis, thermal expansion and four-probe DC resistance measurements indicate that the introduction of Gd3+ ions into the A-site of Ba0.5Sr0.5Co0.8Fe0.2O3?δ (BSCF) leads to the increase in both oxygen nonstoichiometry at room temperature and electrical conductivity. For example, the conductivity of BSGCF is 148 S cm?1 at 507 °C, over 4 times as large as that of BSCF. Furthermore, the electrochemical activity toward the oxygen reduction reaction is also enhanced by the Gd doping. Impedance spectra conducted on symmetrical half cells show that the interfacial polarization resistance of the BSGCF cathode is 0.171 Ω cm2 at 600 °C, smaller than 0.297 Ω cm2 of the BSCF cathode. A Ni/Sm0.2Ce0.8O1.9 anode-supported single cell based on the BSGCF cathode exhibits a peak power density of 551 mW cm?2 at 600 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号