首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spray drying, binder jetting and chemical vapor infiltration (CVI) were used in combination for the first time to fabricate SiC whisker-reinforced SiC ceramic matrix composites (SiCW/SiC). Granulated needle-shaped SiCW was spray dried into SiCW spherical particles to increase flowability and thereby increase printability. Then, binder jetting was employed to print a novel SiCW preform with two-stage pores using the SiCW spherical particles. The subsequent CVI technology produced pure, dense, and continuous SiC matrix with high modulus and strength. Consequently, SiCW/SiC with appropriate mechanical properties was obtained. Finally, the challenges of the novel method and the ways to improve the mechanical properties of SiCW/SiC are discussed.  相似文献   

2.
Acoustic emission (AE) during tensile testing of three-dimensional woven SiC/SiC composites was analyzed by a statistical modeling method based on a Bayesian approach to quantitatively evaluate the fracture process. Gaussian mixture models and Weibull mixture models were utilized as candidate models describing the AE time-series data. After fitting AE time-series data to these models with Markov Chain Monte Carlo (MCMC) methods, the model selection was conducted by stochastic complexity. Among the candidate models, the two-component Weibull mixture model was automatically selected. It was confirmed that the component distributions in the two-component Weibull mixture model were corresponding to the evolution of matrix cracking and fiber breakage, respectively. Since the proposed AE analysis method can determine the number of component distributions without the decision of researchers and inspectors, it is expected to be useful for an understanding of the fracture process in newly developed materials and the reliability assessment in service.  相似文献   

3.
Composites of Cf/Ti5Si3 were prepared by spark plasma sintering a mixture of TiC-coated short carbon fiber and pre-synthesized Ti5Si3 powder. The TiC coating protects the Cf and mediates a mild interdiffusion process between Cf and Ti5Si3, rather than an exothermic reaction. Compared with traditional in-situ fabrication, the use of a pre-synthesized Ti5Si3 powder as a raw material mitigated heat release from the Ti-Si reaction and consequent grain overgrowth. The spark plasma sintering process was completed within 15 min and the relative density of the product reached 99.2 %. The Cf/Ti5Si3 composite achieved a high fracture toughness of 7.57 MPa m1/2 and a flexural strength of 518.3 MPa, which reflected increases of 255 % and 270 %, respectively, compared with those properties of monolithic Ti5Si3. These improvements are attributable to the effects of the carbon fiber reinforcement, the TiC protective coating on the Cf, inhibition of grain overgrowth, and control of interfacial reaction.  相似文献   

4.
SiC nanowire/acrylic resin (SiCnw/ACR) composites with broadband electromagnetic (EM) absorption capabilities were fabricated by a novel procedure using 3D stereolithography (3D-SL) printing technology. The EM absorption abilities of the composites can be adjusted by tuning the SiCnw content and the thickness of the printing layer. When the SiCnw content is 3?wt% and the thickness of the printing layer is 25?μm–50?μm, the SiCnw/ACR composite has an optimally broad effective absorption bandwidth (EAB) and a high efficiency for EM absorption, whether assessing the C, X or Ku band, because of the high dielectric loss and proper impedance matching between the materials and free space. In the C band (4–8?GHz), the EAB reaches 2.9?GHz, and the reflection loss (RL) reaches ?34.1?dB; in the X band (8–12?GHz), the EAB reaches 4?GHz, which covers the entire X band, and the RL reaches ?34.5?dB; in the Ku band (12–18?GHz), the EAB exceeds 6?GHz, which covers the whole Ku band, and the RL reaches ?34.7?dB. This research is of great importance to the rapid preparation of parts, shells or devices with arbitrarily complex shapes and high efficiency broadband EM absorption abilities.  相似文献   

5.
Reactive melt infiltration (RMI) has been proved to be one of the most promising technologies for fabrication of C/SiC composites because of its low cost and short processing cycle. However, the poor mechanical and anti-ablation properties of the RMI-C/SiC composites severely limit their practical use due to an imperfect siliconization of carbon matrixes with thick walls and micron-sized pores. Here, we report a high-performance RMI-C/SiC composite fabricated using a carbon fiber reinforced nanoporous carbon (NC) matrix preform composed of overlapping nanoparticles and abundant nanopores. For comparison, the C/C performs with conventional pyrocarbon (PyC) or resin carbon (ReC) matrixes were also used to explore the effect of carbon matrix on the composition and property of the obtained C/SiC composites. The C/SiC derived from C/NC with a high density of 2.50 g cm?3 has dense and pure SiC matrix and intact carbon fibers due to the complete ceramization of original carbon matrix and the almost full consumption of inspersed silicon. In contrast, the counterparts based on C/PyC or C/ReC with a low density have a little SiC, much residual silicon and carbon, and many corroded fibers. As a result, the C/SiC from C/NC shows the highest flexural strength of 218.1 MPa and the lowest ablation rate of 0.168 µm s?1 in an oxyacetylene flame of ~ 2200 °C with a duration time of 500 s. This work opens up a new way for the development of high-performance ceramic matrix composites by siliconizing the C/C preforms with nanoporous carbon matrix.  相似文献   

6.
《Ceramics International》2023,49(1):489-502
For 3D needle-punch C/SiC composite, four ply structures were adopted to fabricate the composite using the chemical vapor deposition (CVD) and reactive infiltration (RI) methods. Effects of ply structure on the mechanical hysteresis behavior of the 3D NP C/SiC composites were analyzed. The hysteresis-based damage parameters (i.e., unloading/reloading inverse tangent modulus (UITM/RITM), interface slip parameter, and hysteresis width) were analytically derived from the hysteresis theory. Evolution of the hysteresis-based damage parameters with increasing peak stress was analyzed. Comparison analysis of the mechanical hysteresis behavior between the 3D NP-C/SiC with four ply structures were conducted. The hysteresis-based damage parameters reflect the internal damages under cyclic loading. The higher the values of hysteresis-based damage parameters, the more seriously of the damages occurred in the composite.  相似文献   

7.
Fiber-reinforced ceramic matrix composites (CMCs) exhibit excellent thermo-mechanical properties including outstanding resistance against damage and fatigue. Some CMCs show occasionally even a strength enhancement after fatigue, often interpreted with relieve of internal stresses and interfacial degradation. This study reports the influence of low-cycle thermo-mechanical preloading on the bending and tensile strength of carbon fiber-reinforced silicon carbon (C/C-SiC). For this purpose two C/C-SiC materials with the same fiber architecture but different assumed internal stress states were subjected to single and cyclic mechanical preloads up to 90% of their ultimate strength level at room temperature and at 350 °C. Statistical evaluations of the experiments show that the ultimate strength values were surprisingly unchanged after preloading. The results are discussed regarding the thermal residual stresses (TRS).  相似文献   

8.
The SiCf/Si3N4 composite with low–high–low permittivity sandwich structure was designed for high-temperature electromagnetic (EM) wave absorption and mechanical stability. The SiCf/Si3N4 possessed the remarkable mechanical properties at room temperature (the flexural strength is 357 ± 16 MPa and the fracture toughness is 10.8 ± 1.7 MPa m1/2) for the strong fiber strength, moderate interface bonding strength and uniform matrix. Furthermore, the retention rate is as high as 80% at 800 °C. The A/B/C nanostructure and the sandwich meta-structure endowed the SiCf/Si3N4 with an excellent EM absorbing property at room temperature. The SiCf/Si3N4 still absorbed 75% of the incident EM waves energy in X and Ku bands when the temperature increases up to 600 °C, which is only 6% lower than that at room temperature, for the partial compensation of the decreased interfacial polarization loss for the increased conductivity loss and dipole polarization loss.  相似文献   

9.
《Ceramics International》2016,42(15):16535-16551
The hysteresis loops of C/SiC ceramic-matrix composites (CMCs) with different fiber preforms, i.e., unidirectional, cross-ply, 2D and 2.5D woven, 3D braided, and 3D needled at room temperature have been investigated. Based on fiber slipping mechanisms, the hysteresis loops models considering different interface slip cases have been developed. The effects of fiber volume fraction, matrix cracking density, interface shear stress, interface debonded energy, and fibers failure on hysteresis loops, hysteresis dissipated energy, hysteresis width, and hysteresis modulus have been analyzed. An effective coefficient of fiber volume fraction along the loading direction (ECFL) was introduced to describe fiber preforms. The hysteresis loops, hysteresis dissipated energy and hysteresis modulus of unidirectional, cross-ply, 2D and 2.5D woven, 3D braided and 3D needled C/SiC composites have been predicted.  相似文献   

10.
11.
Ceramic design based on reducing friction and wear-related failures in moving mechanical systems has gained tremendous attention due to increased demands for durability, reliability and energy conservation. However, only few materials can meet these requirements at high temperatures. Here, we designed and prepared a Sn-containing Si3N4-based composite, which displayed excellent tribological properties at high temperatures. The results showed that the friction coefficient and wear rate of the composites were reduced to 0.27 and 4.88 × 10?6 mm3 N?1 m?1 in air at 800 °C. The wear mechanism of the sliding pairs at different temperatures was revealed via detailed analyses of the worn surfaces. In addition, the tribo-driven graphitization was detected on the wear surfaces and in the wear debris, and the carbon phase was identified by SEM, TEM, and Raman spectrum.  相似文献   

12.
Ceramic cores based on alumina and silica are important in the manufacturing of hollow blades. However, obtaining good properties and precision is still challenging. In this research, alumina-based ceramics cores were obtained by 3D printing technology, and the effects of silica contents on the mechanical properties of the as-obtained alumina ceramic cores were evaluated. The results showed significant improvements in flexural strengths of the ceramics from 13.3 MPa to 46.3 MPa at silica contents from 0 wt% to 30 wt% due to formation of mullite phase (Al6Si2O13). By contrast, the flexural strengths declined as silica content further increased due to the generation of massive liquid phase. Also, porous structures and cracks were observed by scanning electron microscopy due to the removal of cured photosensitive resin and the mullitization reaction between alumina and silica, respectively. The manufacturing process of hollow blades required ceramic cores with flexural strengths greater than 20 MPa to resist the strike of metal liquid, as well as open porosity above 20 % to provide space for alkali liquor to dissolve the ceramic cores. As a result, 10 wt% silica was determined as the optimal value to yield ceramics with improved properties in terms of flexural strength (35.6 MPa) and open porosity (47.5 %), thereby satisfy the application requirement for the fabrication of ceramic cores.  相似文献   

13.
Ceramic matrix composites (CMCs) exhibit quasi-ductile behavior beyond the initial elastic region driven by a weak fiber-matrix interface that can be further engineered by introducing a finite thickness interphaseleading to enhanced strength and toughness. The current work explores the engineering of interphases in CMCs by a controlled variation of fabrication process parameters. C/BN/SiC minicomposite configurations have been fabricated by chemical vapor infiltration (CVI) with the intent of varying interphase thickness and constituent volume fractions by varying the interphase and matrix infiltration durations. The effect of processing durations on the resulting microstructure, tensile response, and damage mechanisms up to and during ultimate failure of CMC minicomposites have been investigated. The presented results highlight the significant influence of processing duration on the tensile and failure behavior of CMC minicomposites thereby providing an insight into the processing-microstructure-tensile response relationship in CMCs.  相似文献   

14.
15.
碳纤维增强SiC陶瓷复合材料的研究进展   总被引:7,自引:0,他引:7  
碳纤维增强SiC陶瓷基复合材料具有良好的高温力学性能,是航空航天和能源等领域新的高温结构材料研究的热点之一.本文回顾了增强体碳纤维的发展,对材料的成型制备工艺,材料的抗氧化涂层研究进展和现有的一些应用做了综述,并展望了碳纤维增强SiC陶瓷基复合材料以后的研究重点及发展前景.  相似文献   

16.
《Ceramics International》2022,48(16):23258-23265
Al2O3/SiC ceramic composites with different SiC contents have been prepared by powder metallurgy at 1600 °C for 120 min at 30 MPa pressure. The effect of second phase particles on the microstructure and mechanical properties of composites have been studied. The results show that SiC particle has a significant impact on the matrix subjected to residual stress, and on the microstructure of the composites as well. The average grain size of alumina matrix decreases as the SiC particle content increases. Simultaneously, it has been found that the mechanical properties of the material are significantly enhanced in comparison with monolithic Al2O3. The highest strength and toughness are obtained when the SiC content is 15 vol%, and the values are 1237 MPa and 5.68 MPa m1/2, respectively. The mechanisms of strengthening and toughening have been discussed.  相似文献   

17.
《Ceramics International》2022,48(8):10613-10619
Alumina ceramics with different unit numbers and gradient modes were prepared by digital light processing (DLP) 3D printing technology. The side length of each functional gradient structure was 10 mm, the porosity ratio was controlled to 70%, and the number of units were (1 × 1 × 1 unit) and (2 × 2 × 2 unit) respectively. The different gradient modes were named FCC, GFCC-1, GFCC-2 and GFCC-3. SEM, XRD, and other characterization methods proved that these gradient structures of alumina ceramics had only α-Al2O3 phase and good surface morphology. The mechanical properties and energy absorption properties of alumina ceramics with different functional gradient structures were studied by compression test. The results show that the gradient structure with 1 × 1 × 1 unit has better mechanical properties and energy absorption properties when the number of units is different. When the number of units is the same, GFCC-2 and GFCC-3 gradient structures have better compressive performance and energy absorption potential than FCC structures. The GFCC-2 gradient structure with 1 × 1 × 1 unit has a maximum compressive strength of 19.62 MPa and a maximum energy absorption value of 2.72 × 105 J/m3. The good performance of such functional gradient structures can provide new ideas for the design of lightweight and compressive energy absorption structures in the future.  相似文献   

18.
The Cf/Ti3SiC2 composites were fabricated through spark plasma sintering (SPS) and hot isostatic pressing (HIP), TiC coated Cf and Ti3SiC2 powder were used as starting materials. The improved fracture toughness (KIC) and Vickers hardness (HV1) of the TiC coated Cf/Ti3SiC2 composite fabricated by SPS were 7.59 MPa·m1/2 and 7.28 GPa. On this foundation, taking the advantage of better sintering process of HIP, the highest KIC and HV1 achieved 8.32 MPa·m1/2 and 9.24 GPa with fiber content of 10 vol%, which increased by 40% and 65% compared with that of monolithic Ti3SiC2. The reasonable control of reactive interface is the main factor for the improved mechanical properties of the composites, the TiC coating effectively protected the fiber structure from interfacial reaction compared with that of the non-coated Cf/Ti3SiC2. Meanwhile, the artificially designed and weakly bonded TiC coated Cf can fully exert the toughening mechanisms like fiber pull-out and debonding.  相似文献   

19.
Push-out tests were performed on SiC-SiC fiber composites with single- and multi-layered pyrolytic carbon fiber-matrix interphases. It is shown that experimental scatter is significant and a large number of tests is necessary in order to obtain statistically relevant values of interfacial shear strength. A difference between the regions of an individual fiber tow is observed, linked to local porosity. Interfacial debonding occurs along the boundary between the fiber and the first carbon layer, regardless of the structure of the interphase, and therefore interfacial shear strength is not directly linked to the structure of the interphase.  相似文献   

20.
《Ceramics International》2019,45(12):14481-14489
Recent studies on carbon fiber-reinforced ultra-high temperature ceramic matrix (C/UHTC) composites fabricated by hot-pressing, chemical vapor infiltration, polymer impregnation and pyrolysis, and melt infiltration (MI) are reviewed. Various efforts have been made to improve these preparation processes and to combine two or more of these because they have both the advantages and disadvantages in terms of the processing time, operating temperature, and the porosity of the resulting C/UHTC composites. In addition, the parameters governing the fracture toughness, thermal conductivity, and recession behavior (in oxidizing environments) of these composites have been discussed. This review demonstrates that C/UHTC composites with Zr- or Hf-based UHTC matrices fabricated via MI are potential candidates for advanced heat-resistant structural materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号