首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2019,45(14):17224-17235
The low residual stress and excellent thermal insulation performance are the two primary performance indicators to evaluate the Double-Ceramic-Layers Thermal Barrier Coating System (DCL-TBCs). Based on the theoretical and numerical models, the sensitivity analysis was utilized to quantify the effect of material properties of the top coating (TC) and geometric parameters on the objective functions discussed above in the present work, and the results show that the thickness ratio and the elastic modulus of TC dominate the influence on the residual stresses in YSZ and TC respectively, and the thermal conductivity of TC has a decisive effect on the overall thermal insulation performance in DCL TC/YSZ systems. Besides, a fast multi-objective optimization method combining back propagation neural network (BPNN) and non-dominated sorting genetic algorithm with constraints (Constrained NSGA-II) has been developed to find the optimal coating structure which can make the residual stresses in ceramic layers and the equivalent thermal conductivity of entire TBCs minimized for various DCL-TBC systems. And the feasible design parameters including the total thickness of two ceramic layers (TH) and the thickness ratio (TR) of YSZ to TH were obtained considering the limitation of YSZ operating temperature and the sintering temperature of the TC. Furthermore, the reference structural parameters were chosen from the optimal solutions by using a typical decision-making TOPSIS method. Finally, the results of sensitivity analysis can also be used to account for the difference in Pareto frontiers of the LZ/YSZ, LaPO4/YSZ and LZ7C3/YSZ DCL-TBC systems.  相似文献   

2.
Thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, during aero engine operation, environmentally ingested airborne particles, which includes mineral debris, sand dust and volcanic ashes get ingested by the turbine with the intake air. As engine temperatures increase, the finer debris tends to adhere to the coating surface and form calcium magnesium alumino-silicate (CMAS) melts that penetrate the open void spaces in the coating. Upon cooling at the end of an operation cycle, the melt freezes and the infiltrated volume of the coating becomes rigid and starts to spall by losing its ability to accommodate strains arising from the thermal expansion mismatch with the underlying metal. The state-of-the-art ZrO2-7-weight% Y2O3 (YSZ) coatings are susceptible to the aforementioned degradation. Rare-earth zirconates have generated substantial interest as novel thermal barrier coatings (TBC) based primarily on their intrinsically lower thermal conductivity and higher resistance to sintering than YSZ. In addition, the pyrochlore zirconates are stable as single phases at up to their melting point. La2Zr2O7 (LZ) is one among such candidates. Hence, the present study focusses on the comparison of cyclic molten CMAS infiltration behaviour of the base metal Inconel 738 (BM), the bond coat NiCrAlY (BC), the duplex YSZ, the LZ coating and a five layered coated specimen with LZ as top layer. Among those coatings mentioned above, the five layer coated specimen showed excellent CMAS infiltration resistance under thermal cycling conditions.  相似文献   

3.
The single-ceramic-layer (SCL) 8YSZ (conventional and nanostructured 8YSZ) and double-ceramic-layer (DCL) La2Zr2O7 (LZ)/8YSZ thermal barrier coatings (TBCs) were fabricated by plasma spraying on nickel-based superalloy substrates with NiCrAlY as the bond coat. The thermal shock behavior of the three as-sprayed TBCs at 1000 °C and 1200 °C was investigated. The results indicate that the thermal cycling lifetime of LZ/8YSZ TBCs is longer than that of SCL 8YSZ TBCs due to the fact that the DCL LZ/8YSZ TBCs further enhance the thermal insulation effect, improve the sintering resistance ability and relieve the thermal mismatch between the ceramic layer and the metallic layer at high temperature. The nanostructured 8YSZ has higher thermal shock resistance ability than that of the conventional 8YSZ TBC which is attributed to the lower tensile stress in plane and higher fracture toughness of the nanostructured 8YSZ layer. The pre-existed cracks in the surface propagate toward the interface vertically under the thermal activation. The nucleation and growth of the horizontal crack along the interface eventually lead to the failure of the coating. The crack propagation modes have been established, and the failure patterns of the three as-sprayed coatings during thermal shock have been discussed in detail.  相似文献   

4.
We report a double-ceramic-layer (DCL) thermal barrier coating (TBC) with high-entropy rare-earth zirconate (HE-REZ) as the top layer and yttria stabilized zirconia (YSZ) as the inner layer sprayed on Ni-based superalloy by atmospheric plasma spraying. La2Zr2O7 (LZ) was selected as a reference for the HE-REZ. Thermal cycling test results demonstrate that the HE-REZ/YSZ DCL coating exhibited obviously improved thermal stability when compared to the LZ/YSZ DCL coating. The reasons for the improvement of the thermal shock resistance are considered to be the anti-sinterability of the HE-REZ ceramics during the thermal cycling test attributed to the sluggish diffusion effect and as well as the better match in the coefficient of thermal expansion of HE-REZ coating with the YSZ inner layer. In addition, the HE-REZ coating maintains fluorite structure after thermal cycling test. This study makes one step forward in the development and application of high-entropy rare-earth zirconate ceramic thermal barrier coatings.  相似文献   

5.
《Ceramics International》2016,42(11):12922-12927
The single-ceramic-layer (SCL) Sm2Zr2O7 (SZO) and double-ceramic-layer (DCL) Sm2Zr2O7 (SZO)/8YSZ thermal barrier coatings (TBCs) were deposited by atmospheric plasma spraying on nickel-based superalloy substrates with NiCoCrAlY as the bond coat. The mechanical properties of the coatings were evaluated using bonding strength and thermal cycling lifetime tests. The microstructures and phase compositions of the coatings were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The results show that both coatings demonstrate a well compact state. The DCL SZO/8YSZ TBCs exhibits an average bonding strength approximately 1.5 times higher when compared to the SCL SZO TBCs. The thermal cycling lifetime of DCL SZO/8YSZ TBCs is 660 cycles, which is much longer than that of SCL 8YSZ TBCs (150 cycles). After 660 thermal cycling, only a little spot spallation appears on the surface of the DCL SZO/8YSZ coating. The excellent mechanical properties of the DCL LZ/8YSZ TBCs can be attributed to the underlying 8YSZ coating with the combinational structures, which contributes to improve the toughness and relieve the thermal mismatch between the ceramic layer and the metallic bond coat at high temperature.  相似文献   

6.
《Ceramics International》2019,45(14):17409-17419
In order to explore the difference of CMAS corrosion resistance in high temperature and rainwater environment of single-layer and double-layer thermal barrier coatings (TBCs), and further reveal the mechanism of CMAS corrosion resistance in above environment of double-layer TBCs modified by rare earth, two TBCs were prepared by air plasma spraying, whose ceramic coating were single-layer ZrO2–Y2O3 (YSZ) and double-layer La2Zr2O7(LZ)/YSZ, respectively. Subsequently, CMAS corrosion resistance tests at 1200 °C and rainwater environment of two TBCs were carried out. Results demonstrate that after high temperature CMAS corrosion for the same time, due to phase transformation, the volume of YSZ ceramic coating in single-layer TBCs shrank and surface cracks formed, which would lead to coating failure. When LZ ceramic coating of double-layer TBCs reacted with CMAS, compact apatite phases and fluorite phases formed, the penetration of CMAS into ceramic coating was inhibited effectively. Raman analysis and calculation results show that both of the surface residual stress of ceramic coating in two TBCs were compressive stress, and the residual stress of ceramic coating in double-layer TBCs were smaller than that of single-layer TBCs. Atomic force microscopy of TBCs after CMAS corrosion show that surface of double-layer TBCs was more uniform and compact than that of single-layer TBCs. The electrochemical properties in simulated rainwater of two TBCs after high temperature CMAS corrosion showed that double-layer TBCs possessed higher free corrosion potential, lower corrosion current and higher polarization resistance than those of single-layer TBCs. Consequently, the presence of LZ ceramic coating effectively improved CMAS corrosion resistance in high temperature and rainwater environment of double-layer TBCs.  相似文献   

7.
Novel lanthanum-cerium oxide/8?wt% yttria partially stabilized zirconia (LC/8YSZ) thermal barrier coatings (TBCs) were deposited by supersonic atmospheric plasma spraying. The thermal insulation temperature and thermal shock resistance of LC/8YSZ double-ceramic-layer TBCs (DCL-TBCs) were quantitatively evaluated by a burner rig test. The results showed that the thermal insulation temperature increased with the increase of LC layer thickness in DCL-TBCs. When the thickness ratio between LC layer and 8YSZ layer was close to 1:1, the DCL-TBCs had the highest thermal shock resistance. LC/8YSZ thickness ratio significantly affected the energy release rate and the stress induced by thermal gradient or sintering. The sintering stress was found to be the main reason that caused the delamination of LC layer, however, the stress induced by thermal gradient resulted in the spallation of YSZ layer.  相似文献   

8.
《Ceramics International》2023,49(12):20034-20040
In order to reveal the effect of Sc2O3 and Y2O3 co-doping system on the thermal shock resistance of ZrO2 thermal barrier coatings, Y2O3 stabilized ZrO2 thermal barrier coatings (YSZ TBCs) and Sc2O3–Y2O3 co-stabilized ZrO2 thermal barrier coatings (ScYSZ TBCs) were prepared by atmospheric plasma spraying technology. The surface and cross-section micromorphologies of YSZ ceramic coating and ScYSZ ceramic coatings were compared, and their phase composition before and after heat treatment at 1200 °C was analyzed. Whereupon, the thermal shock experiment of the two TBCs at 1100 °C was carried out. The results show that the micromorphologies of YSZ ceramic coating and ScYSZ ceramic coating were not much different, but the porosity of the latter was slightly higher. Before heat treatment, the phase composition of both YSZ ceramic coating and ScYSZ ceramic coating was a single T′ phase. After heat treatment, the phase composition of YSZ ceramic coating was a mixture of M phase, T phase, and C phase, while that of ScYSZ ceramic coating was still a single T′ phase, indicating ScYSZ ceramic coating had better T′ phase stability, which could be attributed to the co-doping system of Sc2O3 and Y2O3 facilitated the formation of defect clusters. In the thermal shock experiment, the thermal shock life of YSZ TBCs was 310 times, while that of ScYSZ TBCs was 370 times, indicating the latter had better thermal shock resistance. The difference in thermal shock resistance could be attributed to the different sintering resistance of ceramic coatings and the different growth rates of thermally grown oxide in the two TBCs. Furthermore, the thermal shock failure modes of YSZ TBCs and ScYSZ TBCs were different, the former was delamination, while the latter was delamination and shallow spallation.  相似文献   

9.
Thermal insulation applications have long required materials with low thermal conductivity, and one example is yttria (Y2O3)-stabilized zirconia (ZrO2) (YSZ) as thermal barrier coatings used in gas turbine engines. Although porosity has been a route to the low thermal conductivity of YSZ coatings, nonporous and conformal coating of YSZ thin films with low thermal conductivity may find a great impact on various thermal insulation applications in nanostructured materials and nanoscale devices. Here, we report on measurements of the thermal conductivity of atomic layer deposition-grown, nonporous YSZ thin films of thickness down to 35 nm using time-domain thermoreflectance. We find that the measured thermal conductivities are 1.35–1.5 W m−1 K−1 and do not strongly vary with film thickness. Without any reduction in thermal conductivity associated with porosity, the conductivities we report approach the minimum, amorphous limit, 1.25 W m−1 K−1, predicted by the minimum thermal conductivity model.  相似文献   

10.
《Ceramics International》2023,49(6):8962-8975
The porous ceramic coating as a "brick" layer sprayed by air plasma spraying(APS) and MK resin as a "mud" layer prepared by a high viscosity spray gun were characterized and tested. Three specifications of the "brick-mud" layered ceramic sealing coating were fabricated through the cyclic and orderly deposition of the "brick" layer and "mud" layer, and the thermal cycling performance and failure mechanism of the three new coatings were studied. The results showed that the agglomerated Y2O3 partially stabilized ZrO2 (YSZ) particles had porous spherical structures and good sprayability, and the content of the YSZ phase in the prepared "brick" layer was 54.2%. The "mud" layer had good phase stability and was amorphous SiO2 at and below 1100 °C. The fracture toughness of the pure YSZ coating was 2.295 ± 0.135 MPa?m0.5, and which of the “mud” layer was reduced by 72.3%. The thermal cycling life of the conventional coating was only 67.3 times, which of A1, A2 and A3 coatings with 2, 3 and 6 "mud" layers were increased by 32.4%, 124.8% and 88.3%, respectively. In the thermal cycling process, the "weak" layer in the "brick-mud" layered coating led to the redistribution of internal stress and reduced the stress concentration in the top coating (TC)/TGO interface. Moreover, the initiation of microcracks in the "weak" layer, along with the "crack branching" effect and the "crack deflection" effect during the crack propagation process, could consume partial internal stress. Thus, the crack growth rates in the TC coating/TGO interface of the A1, A2 and A3coatings were lower than that of the conventional coating due to the above stress release mechanisms. In addition, the thermal cycling lives of the three new coatings with 2, 3 and 6 "mud" layers were improved to different degrees because of different stress effects.  相似文献   

11.
Double-ceramic-layer (DCL) thermal barrier coatings (TBCs) of La2(Zr0.7Ce0.3)2O7 (LZ7C3) and Eu3+-doped zirconia, which was partially stabilised by 8 wt% yttria (8YSZ:Eu), were prepared by atmospheric plasma spraying. A thermal cycling test was carried out. The 8YSZ:Eu sublayer exposed during thermal cycling could produce visible luminescence under ultraviolet (UV) illumination, providing an indication of the spallation and damage degree of the coating. The result shows that the application of a Eu3+-doped luminescence sublayer can be a very simple and useful non-destructive technique to indicate the spallation and damage degree of DCL coatings.  相似文献   

12.
La2Zr2O7 is a promising thermal barrier coating (TBC) material. In this work, La2Zr2O7 and 8YSZ-layered TBC systems were fabricated. Thermal properties such as thermal conductivity and coefficient of thermal expansion were investigated. Furnace heat treatment and jet engine thermal shock (JETS) tests were also conducted. The thermal conductivities of porous La2Zr2O7 single-layer coatings are 0.50–0.66?W?m?1?°C?1 at the temperature range from 100 to 900°C, which are 30–40% lower than the 8YSZ coatings. The coefficients of thermal expansion of La2Zr2O7 coatings are about 9–10?×?10?6?°C?1 at the temperature range from 200 to 1200°C, which are close to those of 8YSZ at low temperature range and about 10% lower than 8YSZ at high temperature range. Double-layer porous 8YSZ plus La2Zr2O7 coatings show a better performance in thermal cycling experiments. It is likely because porous 8YSZ serves as a buffer layer to release stress.  相似文献   

13.
《Ceramics International》2022,48(5):6185-6198
In this study, a La0.8Ba0.2TiO3?δ (LBT) upper layer was deposited on an yttria-stabilized zirconia (YSZ) thermal barrier coating (TBC) through atmospheric plasma spraying. The thermal cycling behaviors of the YSZ single-ceramic-layer and LBT–YSZ double-ceramic-layer coatings at 1000 °C were investigated through a water quenching method. Moreover, phases, microstructural evolution, and elemental distributions were studied through by X-ray diffraction and scanning electron microscopy–energy-dispersive X-ray spectroscopy. The results showed that the thermal cycling lifetime of the LBT–YSZ coating was 27% higher than that of conventional YSZ coating. The conventional YSZ coating failed after 251 cycles because of the joining of the continuous horizontal and vertical cracks caused by the formation of thermal growth oxides and the bending effect of the single-ceramic-layer structure. The thermal cycling behavior of the LBT–YSZ coating was different from that of the YSZ coating at the edge and center. Although the former was similar to the failure behavior of the YSZ coating, the cracks in the vertical direction were deflected as a result of the bending effect of the double-ceramic-layer structure during quenching. This deflection led to the formation of slope cracks with longer propagation paths and slope spallation zones. The latter showed small-debris spallation on top of the LBT upper layer due to the lower fracture toughness of the LBT, which protected the central coating from the structural damage of the ceramic coating. These two behaviors would either release the thermal stress or increase the crack-propagation energy requirement in the ceramic coating, consequently improving the thermal cycling lifetime of the LBT–YSZ coating. In summary, depositing an LBT upper layer could potentially improve the thermal cycling lifetimes of TBCs.  相似文献   

14.
《Ceramics International》2017,43(5):4048-4054
Zirconates with pyrochlore structure, such as Gd2Zr2O7, are new promising thermal barrier coatings because of their very low thermal conductivity and good chemical resistance against molten salts. However, their coefficient of thermal expansion is low, therefore their thermal fatigue resistance is compromised. As a solution, the combination of yttria-stabilised zirconia (YSZ) and Gd2Zr2O7 can reduce the thermal contraction mismatch between the thermal barrier coating parts.In the present study, two possible designs have been performed to combine YSZ/Gd2Zr2O7. On the one hand, a multilayer coating was obtained where YSZ layer was deposited between a Gd2Zr2O7 layer and a bond coat. On the other hand, a functionally-graded coating was designed where different layers with variable ratios of YSZ/Gd2Zr2O7 were deposited such that the composition gradually changed along the coating thickness.Multilayer and functionally-graded coatings underwent isothermal and thermally-cycled treatments in order to evaluate the oxidation, sintering effects and thermal fatigue resistance of the coatings. The YSZ/Gd2Zr2O7 multilayer coating displayed better thermal behaviour than the Gd2Zr2O7 monolayer coating but quite less thermal fatigue resistance compared to the conventional YSZ coating. However, the functionally-graded coating displays a good thermal fatigue resistance. Hence, it can be concluded that this kind of design is ideal to optimise the behaviour of thermal barrier coatings.  相似文献   

15.
Thermal conductivity is a crucial parameter for evaluating the quality and thermal effects of ceramic coatings, especially for thermal barrier coatings. However, measurement by conventional method involves two problems: (a) it is difficult to peel off a ceramic coating from a substrate; (b) even if the coating can be peeled off, it is still hardly used as standard specimen in test. Therefore, the relative method was proposed to evaluate the thermal conductivity of ceramic coating. An analytical relationship among the thermal conductivities of the coating, the substrate, and the coating/substrate composite was established. Experiments on TA4 coated with YSZ coatings were carried out to demonstrate the feasibility of this novel method and to investigate the impact of temperature on the thermal conductivity of YSZ coatings. The experimental results demonstrated the validity and convenience of the relative method. With the increasing testing temperature, the thermal conductivity value of YSZ coatings displayed nonlinearity feature, that is, decreased from 1.4 to 1.3 (W m−1 K−1) in the temperature range of 32-300°C and then increased up to 1.58 W m−1 K−1 at 1000°C.  相似文献   

16.
The PS-PVD method was used to prepare 7YSZ thermal barrier coatings (TBCs) and NiCrAlY bond coatings on a DZ40 M substrate. To prevent oxidation of the coating, magnetron sputtering was used to modify the surface of TBCs with an Al film. To explore the stability of TBCs during thermal cycling, water quenching was performed at 1100 °C, and ultralong air cooling for 16,000 cycles was performed. The results showed that before water quenching and air cooling, the top surface structure of the 7YSZ TBCs changed. After water quenching, the surface of the Al film was scoured and broken, the surface peeled off layer-by-layer, and cracks formed at the interface between the thermally grown oxide and NiCrAlY. During air cooling of the thermal cycle, the Al film reacted with O2 in the air to form a dense Al2O3 top layer that coated the cauliflower-like 7YSZ surface and maintained the feather-like shape. At the same time, the TGO layer between 7YSZ and NiCrAlY grew and cracked. The two thermal cycles of water quenching and air cooling led to different failure mechanisms of TBCs. Water quenching failure was caused by layer-by-layer failure of the 7YSZ top coat, while air cooling failure occurred due to the internal cracking of the TGO layer at the 7YSZ/NiCrAlY interface and the failure of the TGO/NiCrAlY interface.  相似文献   

17.
Yttria-stabilized zirconia (YSZ)-coatings are deposited on Ni-based superalloy IN738 by atmospheric plasma spraying (APS). For the first time, controlled segmentation crack densities are manually developed in the coatings, even after the APS deposition. This method allows to user to control segmentation densities as well as cracks depth, which could be designed as per coating thickness and required application. Thermal cycling test shows promising strain tolerance behavior for the segmented coatings, whereas coating without segmentation could not sustain even for its first thermal cycle period. Further, microstructural studies reveal that a very thin layer of TGO was formed and obvious no coating failure or spallation was observed after thermal cycling test at 1150 °C for 500 cycles.  相似文献   

18.
Double ceramic layer (DCL) TBCs consisting of a top 20 wt.% Al2O3-7YSZ layer and a bottom 7YSZ layer were desirably designed to achieve preferable performance while the thermal, mechanical and thermal cyclic properties were comprehensively investigated. Compared to the conventional 7YSZ TBCs, the thermal insulation properties of the DCL coating were significantly improved due to the increased oxygen vacancy concentration induced by Al2O3 addition while the thickness of the thermally grown oxides was diminished by the decreased oxygen diffusion rate. Furthermore, the improved fracture toughness of the DCL coating also prolonged the thermal cyclic life.  相似文献   

19.
LaPO4 powders were produced by a chemical co-precipitation and calcination method. The ceramic exhibited a monazite structure, kept phase stability at 1400?°C for 100?h, and had low thermal conductivity (~ 1.41?W/m?K, 1000?°C). LaPO4/Y2O3 partially stabilized ZrO2 (LaPO4/YSZ) double-ceramic-layer (DCL) thermal barrier coatings (TBCs) were fabricated by air plasma spray. The LaPO4 coating contained many nanozones. Thermal cycling tests indicated that the spallation of LaPO4/YSZ DCL TBCs initially occurred in the LaPO4 coating. The failure mode was similar to those of many newly developed TBCs, probably due to the low toughness of the ceramics. LaPO4/YSZ DCL TBCs were highly resistant to V2O5 corrosion. Exposed to V2O5 at 700–900?°C for 4?h, La(P,V)O4 formed as the corrosion product, which had little detrimental effect on the coating microstructure. At 1000?°C for 4?h, a minor amount of LaVO4 was generated.  相似文献   

20.
Nowadays, the Gd2Zr2O7 thermal barrier coatings (TBCs) have been evaluated as a promising alternative to yttria-stabilized zirconia (YSZ). Thus, this investigation focuses on the thermal property, morphology, and failure mechanism of double ceramic layers (DCLs) GdNdZrO/YSZ advanced TBCs. The GdNdZrO coatings with columnar morphology have been deposited on NiCoCrAlYHf bond coating using an electron beam physical vapor deposition method. Material characterizations mainly include X-ray diffraction, scanning electron microscope, and transmission electron microscopy. The thermal conductivity of GdNdZrO ceramic material is 0.494 W/mK at 1200°C. The thermal shock life of GdNdZrO/YSZ TBCs shows an average shock life of 5235 cycles. The TBC degradation occurs on the crack area within thermally grown oxide layer leading to the interface instability. The interface broken might play an important role in the failure mechanism of TBCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号