首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to stabilize the perovskite structure and improve the storage energy density (U) of Pb(Tm1/2Nb1/2)O3 (PTmN) based materials, Pb(Mg1/3Nb2/3)O3 (PMN) was introduced into PTmN to form binary (1-x)PTmN-xPMN solid solution ceramics. The XRD patterns show that all the compositions belong to orthorhombic phase with space group Pbnm. The Curie temperature (TC) gradually decreases while the dielectric constant (ε') increases for (1-x)PTmN-xPMN with increasing PMN content. The ε' of each composition above TC obeys the Curie-Weiss law. The appearance double hysteresis loop confirms the antiferroelectric nature of (1-x)PTmN-xPMN (x = 0.02–0.18) ceramics. With the increase of PMN concentration, the maximum polarization slowly increases from 8.58 μC/cm2 to 29.5 μC/cm2 while the threshold electric field (EA-F) gradually declines from 290 kV/cm to 120 kV/cm. The maximum of U (3.12 J/cm3) is obtained in 0.92PTmN-0.08PMN ceramic with moderate EA-F = 220 kV/cm, which makes (1-x)PTmN-xPMN ceramics safe in practical application.  相似文献   

2.
Broadband dielectric spectroscopy results of various ordered and disordered (1 ? x)Pb(Mg1/3Nb2/3)O3–(x)Pb(Sc1/2Nb1/2)O3 (PMN–PSN) ceramics are investigated in the temperature range from 80 K to 300 K and frequency range from 20 Hz to 2 THz. Dielectric dispersion is very broad and in the ferroelectrics case (x = 1, 0.95) consists of two parts: low-frequency part caused by ferroelectric domains and higher frequency part caused by soft mode. The relaxational soft mode exhibits pronounced softening close to phase transition temperature, as it is typical for order–disorder phase transitions. By substituting Sc3+ by Mg2+ in PMN–PSN ceramics relaxation slows down, and for relaxors (x = 0.2) the most probable relaxation frequency decreases on cooling according to Vogel–Fulcher law.  相似文献   

3.
Ceramics of the xPb(Zn1/3Nb2/3)O3–(1 ? x ? y)Pb(Yb1/2Nb1/2)O3yPbTiO3 (PZN–PYN–PT) ternary system were synthesized using a modified two-step columbite precursor method which can effectively suppress the pyrochlore phase. A morphotropic phase boundary (MPB) region, separating tetragonal and rhombohedral phases in the ternary systems has been determined. The electric properties of the compositions near MPB region were investigated. Dielectric response exhibits relaxor-like characteristics with broad dielectric peaks and dispersive dielectric behavior with respect to frequency and temperature. The phase diagram of the 0.45PZN–(0.55 ? y)PYN–yPT pseudo-binary system in the composition range of 0.15 < y < 0.35 was established based on dielectric measurements. The optimal properties were achieved in the MPB composition of 0.52PZN–0.21PYN–0.27PT with piezoelectric coefficient d33, dielectric permittivity ε′, planar electromechanical coupling kp, dielectric loss tan δ, coercive field Ec, remnant polarization Pr, and TC being of 558 pC/N, 2065, 62%, 0.2%, 19.88 kV/cm, 31.44 μC/cm2 and 259.5 °C, respectively, showing potential usage in high-temperature electromechanical applications.  相似文献   

4.
Further improving electromechanical properties and overcoming relatively low Curie temperature (Tc) of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-100xPT) are still two scientific issues. Here, we demonstrate a stable coexistence of monoclinic-tetragonal (MC-T) phases in ZnO-modified PMN-32PT (PMN-32PT:xZnO) due to the diffusion-induced substitution of Zn2+ for Mg2+. The Curie temperature, saturated polarization, remnant polarization, piezoelectric coefficient (Tc, Ps, Pr, d33) are increased from (160 °C, 22.0 μC/cm2, 13.3 μC/cm2, 350 pC/N) for x = 0 to (180 °C, 30.3 μC/cm2, 22.4 μC/cm2, 470 pC/N) for x = 0.06. Moreover, the thermal stability is improved. After annealing at 150 °C, the x = 0.06 sample shows retrained d33 value of 209 pC/N, about 4 times larger than that of x = 0 counterpart. The improved properties are attributed to the substituting increased polar nanoregions and easy domain switching in MC phase.  相似文献   

5.
《Ceramics International》2016,42(14):15332-15337
The dielectric, piezoelectric, and ferroelectric properties of Mn-doped and undoped yPb(In1/2Nb1/2)O3-(1−xy)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PIN-PMN-PT) ternary ceramics with morphotropic phase boundary composition have been investigated. Mn-doped PIN-PMN-PT ceramics show obvious hardening characteristics. With 2 mol% Mn doping the mechanical quality factor Qm can be increased to as high as 2000, while the electromechanical coupling factor (kp=57%) is still comparable to that of the undoped counterpart. The internal bias field Ei was analyzed and calculated based on the P-E hysteresis loops for the Mn-doped PIN-PMN-PT ceramic. The relatively high Curie temperature, very high Qm, and low dielectric loss make the Mn-doped PIN-PMN-PT ceramics good candidates for high power and high temperature electromechanical device applications.  相似文献   

6.
Li2Ti1-x(Mg1/3Nb2/3)xO3 ceramics were prepared by conventional solid state process. Their structural evolution, grain growth kinetics and microwave dielectric properties have been studied in this paper. The results show that continuous solid solution could be formed within the experiment compositional range. The structure changed from long range ordered monoclinic into short range ordered cubic phase as the increase in x. Small levels of substitution for Ti4+by (Mg1/3Nb2/3)4+ slightly decreased the dielectric permittivity, while considerably improved the Q × f value. The temperature coefficient of resonant frequency changed from positive into negative value. The grain growth kinetics during sintering process and Q × f value of the sintered body were affected by different calcining temperature of mixed powders. Excellent combined microwave dielectric properties with εr ~21.0, Q × f  200 000 GHz and τf value of ?1 ppm/ °C could be obtained after optimizing calcining temperature for the x = 0.24 composition after sintering at 1250 °C/2 h.  相似文献   

7.
Five Ba(Co1/3Nb2/3)O3 samples sintered at different temperatures (form 1350 to 1550 °C), one Ba(Mg1/3Ta2/3)O3 and a Ba(Mg1/3Nb2/3)O3 sample were examined by Raman scattering to reveal the correlation of the 1:2 ordered perovskite structure with the microwave properties, such as dielectric constant and Q factors. The Ba(Co1/3Nb2/3)O3 sample sintered at 1400 °C, which possesses the highest microwave Q value and the lowest dielectric constant among five Ba(Co1/3Nb2/3)O3 samples, has the narrowest width and the highest frequency of the stretch mode of oxygen octahedron (i.e. A1g(O) near 800 cm−1). We found that the dielectric constant is strongly correlated with the Raman shift of A1g(O) stretch modes, and the width of A1g(O) stretch mode reflects the quality factor Q × f value in the 1:2 ordered perovskite materials. This concludes that the oxygen octahedron play an important role of the material's microwave performance. Based on the results of Q × f values and the lineshapes of A1g(O) stretch mode, we found that the propagation of microwave energy in Ba(Mg1/3Ta2/3)O3 and Ba(Mg1/3Nb2/3)O3 shows weak damping behavior, however, Ba(Co1/3Nb2/3)O3 samples sintered at different temperature exhibit heavily damped behavior.  相似文献   

8.
Ceramics in the system Ba(Ni1/3Nb2/3)O3–Ba(Zn1/3Nb2/3)O3 (BNN–BZN) were prepared by the mixed oxide route. Powders were mixed and milled, calcined at 1100–1200 °C then pressed and sintered at temperatures in the range 1400–1500 °C for 4 h. Selected samples were annealed or slowly cooled after sintering. Most products were in excess of 96% theoretical density. X-ray diffraction confirmed that all specimens were ordered to some degree and could be indexed to hexagonal geometry. Microstructural analysis confirmed the presence of phases related to Ba5Nb4O15 and Ba8Zn1Nb6O24 at the surfaces of the samples. The end members BNN and BZN exhibited good dielectric properties with quality factor (Qf) values in excess of 25,000 and 50,000 GHz, respectively, after rapid cooling at 240 °C h−1. In contrast, mid-range compositions had poor Qf values, less than 10,000 GHz. However, after sintering at 1450 °C for 4 h and annealing at 1300 °C for 72 h, specimens of 0.35(Ba(Ni1/3Nb2/3)O3)–0.65(Ba(Zn1/3Nb2/3)O3) exhibit good dielectric properties: τf of +0.6 ppm °C−1, relative permittivity of 35 and quality factor in excess of 25,000 GHz. The improvement in properties after annealing is primarily due to an increase in homogeneity.  相似文献   

9.
The dielectric and piezoelectric properties were investigated in the (1 ? x)Pb(Hf1?yTiy)O3xPb(Ni1/3Nb2/3)O3 (PNN–PHT, x = 0.05–0.50, y = 0.55–0.70) ternary system. The morphotropic phase boundary (MPB) was determined by X-ray powder diffraction analysis. Isothermal map of Curie temperature (TC) related to the compositions in the phase diagram was obtained. The optimum dielectric and piezoelectric properties were achieved in ceramics with the MPB compositions, with the maxima values being on the order of 6000 and 970pC/N, respectively. Rayleigh analysis was used to study the extrinsic contribution (domain wall motion) in PNN–PHT system, where the extrinsic contribution was found to be ~30% for composition 0.49PNN–0.51PHT(30/70), showing a high nonlinearity.  相似文献   

10.
The effect of B-site cation deficiency on the structure and microwave dielectric properties of Ba(Co1/3Nb2/3)O3 (BCN) was investigated. Stoichiometric and co-deficient compositions based on Ba(Co1/3−xNb2/3)O3 [x = 0.0, 0.01, 0.02, 0.03 and 0.04] were prepared using the conventional mixed oxide route. Small amounts of V2O5 (0.1 wt%) were added to promote densification. The dielectric loss is very sensitive to the composition; it was found that co-deficiency degraded the microwave dielectric properties. The stoichiometric formulation (x = 0) exhibited the best microwave properties. The improvements in the microwave dielectric properties were achieved by increasing the degree of 1:2 cation ordering. The highly ordered, stoichiometric BCN ceramics showed a relative permittivity (ɛr) of 32, quality factor (Q × f) of 66,500 GHz and a negative temperature coefficient of resonant frequency (τf) of −10 ppm/°C at 4 GHz.  相似文献   

11.
The microwave dielectric properties of Ca(Li1/4Nb3/4)O3–CaTiO3 ceramics have been investigated with regard to calcination temperature and the amount of CaTiO3 additive. Ca(Li1/4Nb3/4)O3 ceramics with an orthorhombic crystal structure can be synthesized by the conventional mixed oxide method by calcining at 750 °C and sintering at 1275 °C. The dielectric constant (ɛr), quality factor (Q × f0) and temperature coefficient of resonant frequency (τf) for Ca(Li1/4Nb3/4)O3 ceramics are 26, 13,000 GHz and −49 ± 2 ppm/°C, respectively. With increase in the CaTiO3 content, ɛr and τf are increased and the quality factor decreased due to the solid-solution formation between Ca(Li1/4Nb3/4)O3 and CaTiO3. The 0.7Ca(Li1/4Nb3/4)O3–0.3CaTiO3 ceramic exhibits ɛr of 44, quality factor (Q × f0) of 12,000 GHz and τf of −9 ± 1 ppm/°C.  相似文献   

12.
The piezoelectric properties of (1-x-y)PbZrO3-xPbTiO3-yPb(Ni1/3Nb2/3)O3 ceramics were investigated. Specimens with a large Pb(Ni1/3Nb2/3)O3 content, which have compositions close to the triple point, show small g33 and d33 × g33 values because of their large εT330. These values increased with a decrease in y (amount of Pb(Ni1/3Nb2/3)O3) and the specimen with x = 0.39 and y = 0.29 showed the largest g33 of 43 × 10−3 V·m/N and d33 × g33 of 25.2 × 10−12 m2/N. Cantilever-type energy harvesters were fabricated using specimens with 0.38  x  0.41 and y = 0.29. The output power densities of the energy harvesters were related to the d31 × g31 × k312 value of the piezoelectric ceramics. The energy harvester fabricated using a specimen with x = 0.39 and y = 0.29, which has a maximum d31 × g31 × k312 value, showed the maximum output power density of 1.01 mW/cm3.  相似文献   

13.
The piezoelectric ceramics of the compositions expressed by the formula: 0.3Pb(Zn1/3Nb2/3)O3-0.7Pb0.96La0.04(ZrxTi1−x)0.99O3 (x = 0.50–0.53) were prepared by two kind of sintering processes: conventional sintering (CS) and hot-pressing (HP) sintering. By comparing the properties of these two series of ceramics, piezoelectric coefficients (d33), electromechanical coupling factors (kp), dielectric constants (ɛr), etc. were enormously improved by HP sinter procedure, which can be attributed to the highly dense microstructure (bulk density >99%). The most impressive results are the d33 (845pC/N) and kp (0.703) in the HP specimen with Zr/Ti = 51/49, which have not been observed in the previous relative reports. Additionally, according to the contrast of the experiment data, the origin of the property improvement was analyzed in details.  相似文献   

14.
A series of Ca0.61Nd0.26Ti1-x(Cr0.5Nb0.5)xO3 (CNTCNx) (0 ≤ x ≤ 0.1) ceramics were prepared via a solid state reaction method. All CNTCNx samples were crystallized into the orthorhombic perovskite structure. The SEM micrographs indicated that the average grain sizes of samples depended on (Cr0.5Nb0.5)4+ concentration. And as (Cr0.5Nb0.5)4+ concentration increased, the average grain size of samples decreased significantly. The short range order (SRO) structure and structural distortion of oxygen octahedra proved to exist in CNTCNx crystals from Raman spectra analysis results. The microwave dielectric properties highly depended on the B-site bond strength, oxygen octahedra distortion, reduction of Ti4+ to Ti3+ and internal strain η. At last, the CNTCN0.06 ceramic sintered at 1400 °C for 4 h exhibited good and stable comprehensive microwave dielectric properties of εr = 92.3, Q × f = 13,889 GHz, τf = + 152.8 ppm/°C.  相似文献   

15.
The objective of this work was to examine linear thermal expansion of virgin and poled 0.57Pb(Sc1/2Nb1/2)O3–0.43PbTiO3 ceramics between 30 °C and 600 °C by contact dilatometry. The thermal expansion dL/Lo of the virgin ceramic increases with increasing temperature until approximately 260 °C. The physical and technical thermal expansion coefficients were determined. At 260 °C the physical thermal coefficient is 2.08 × 10?6 K?1. Between 260.0 °C and 280.0 °C an anomaly in the thermal expansion vs. temperature and an endothermic peak in the differential scanning calorimetry curves correspond to the phase transition region from tetragonal to cubic phase. At temperatures from 280 °C to 600 °C the thermal expansion dL/Lo increases again.In the derivative of the dL/Lo heating curves of the poled ceramics, additionally to the anomaly at 270 °C, also the anomaly at 160 °C is observed, which is associated with the depolarization of the material during heating.  相似文献   

16.
Weberites and pyrochlores (A2B2O7), both fluorite-related superstructures, are attractive dielectric ceramics due to their ability to accommodate diverse cations, thus allowing their properties to be tailored. This study focuses on the fundamental understanding of the structure–dielectric property relationships in fluorite-related oxides. Specifically, Ln3NbO7 and Ln2(Ln′0.5Nb0.5)2O7 (where the ionic radius of Ln′ is smaller than that of Ln) compounds are investigated. It has been previously shown that weberite-type Ln3NbO7 exhibits a composition dependent dielectric relaxation above room temperature. It is here shown that a dielectric relaxation also occurs in La2(Ln′0.5Nb0.5)2O7 (Ln′ = Yb3+, Er3+, and Dy3+) compounds near or below ?158 °C. The temperature, at which the maximum permittivity occurs, is different for different compositions (?132 °C for La2(Yb0.5Nb0.5)2O7, ?197 °C for La2(Er0.5Nb0.5)2O7, and ?187 °C for La2(Dy0.5Nb0.5)2O7 at 1 MHz) and is correlated with the distortion of the NbO6 octahedra. The room temperature dielectric permittivity of all three compounds was measured to be between 40 and 50 at 1 MHz.  相似文献   

17.
(1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 ((1-x)PZN-xPT in short) is one of the most important piezoelectric materials. In this work, we extensively investigated (1-x)PZN-xPT (x = 0.07–0.11) ferroelectric single crystals using in-situ synchrotron μXRD, complemented by TEM and PFM, to correlate microstructures with phase transitions. The results reveal that (i) at 25 °C, the equilibrium state of (1-x)PZN-xPT is a metastable orthorhombic phase for x = 0.07 and 0.08, while it shows coexistence of orthorhombic and tetragonal phases for x = 0.09 and x = 0.11, with all ferroelectric phases accompanied by ferroelastic domains; (ii) upon heating, the phase transformation in x = 0.07 is Orthorhombic  Monoclinic  Tetragonal  Cubic. The coexistence of ferroelectric tetragonal and paraelectric cubic phases was in-situ observed in x = 0.08 above Curie temperature (TC), and (iii) phase transition can be explained by the evolution of the ferroelectric and ferroelastic domains. These results disclose that (1-x)PZN-xPT are in an unstable regime, which is possible factor for its anomalous dielectric response and high piezoelectric coefficient.  相似文献   

18.
A series of (Bi0.5Na0.4K0.1)Ti0.98Nb0.02O3-xLi lead-free ceramics were fabricated using the solid-state reaction technique. The effects of Li/Nb cations on the structural and electrical properties of the ceramics were investigated. All the sintered ceramics exhibited pure perovskite structure and the average grain size increased slightly with increasing the Li content. Shape of the P-E loops illustrated the relaxor characteristic of all the samples. A giant strain of 0.4% was obtained at 60 kV/cm at x = 0.01 and the corresponding normalized strain was up to 683 pm/V, moreover, the strain exhibits excellent fatigue-resistance behavior. The giant strain can be attributed to the ferroelectric-relaxor phase transition under external driving electric field. These results indicate the sintered Li/Nb co-doped lead-free ceramics can be promising candidate for actuator applications.  相似文献   

19.
The structural, vibrational, densification, and microwave properties of Ba(Co1/3Nb2/3)O3 ceramics with small compositional variations along several tie lines in the ternary BaOCoONb2O5 diagram were studied. The results showed that very small deviation from stoichiometric Ba(Co1/3Nb2/3)O3 composition has profound effect on Q × f, degree of ordering, densification, and phase assemblage. The 0.94 Ba(Co1/3Nb2/3)O3–0.06 Ba5Nb4O15 ceramic has the highest Q × f value (71 THz) – a value two times larger than that of stoichiometric Ba(Co1/3Nb2/3)O3 (36 THz). Transformation from the (partial) disordered distribution of Co and Nb cations to 1:2 ordered arrangement in the octahedral sites was found to increase the Q factor of the high density and single phase ceramics. It was also observed that formation of very small amount of Ba9CoNb14O45 second phase degraded Q × f value severely for the dense and highly ordered Nb-rich and Ba-deficient ceramics.  相似文献   

20.
《Ceramics International》2017,43(9):7153-7158
In this work, Yb3+ was selected to replace the Y3+ in yttrium aluminum garnet (YAG) in order to reduce its thermal conductivity under high temperature. A series of (Y1-xYbx)3Al5O12 (x=0, 0.1, 0.2, 0.3, 0.4) ceramics were prepared by solid-state reaction at 1600 °C for 10 h. The microstructure, thermophysical properties and phase stability under high temperature were investigated. The results showed that all the Yb doped (Y1-xYbx)3Al5O12 ceramics were comprised of a single garnet-type Y3Al5O12 phase. The thermal conductivities of (Y1-xYbx)3Al5O12 ceramics firstly decreased and subsequently increased with Yb ions concentration rising from room temperature to 1200 °C. (Y0.7Yb0.3)3Al5O12 had the lowest thermal conductivity among investigated specimens, which was about 1.62 W m−1 K−1 at 1000 °C, around 30% lower than that of pure YAG (2.3 W m−1 K−1, 1000 °C). Yb had almost no effect on the coefficients of thermal expansion (CTEs) of (Y1-xYbx)3Al5O12 ceramics and the CTE was approximate 10.7×10−6 K−1 at 1200 °C. In addition, (Y0.7Yb0.3)3Al5O12 ceramic remained good phase stability when heating from room temperature to 1450 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号