首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of lead-free (1-x)(Bi0.5Na0.5)TiO3-xSrTiO3 (BNT-STx) ceramics was analyzed by the Rietveld method, using X-ray diffraction and neutron scattering data. The structural refinement results suggest that the crystal structure successively changes with SrTiO3 concentration, x, from the rhombohedral phase (x = 0.00) to rhombohedral and tetragonal (x = 0.10–0.30), tetragonal and cubic (x = 0.40–0.60), and finally cubic (x = 0.80–1.00) phases. Correlation between the charge sensor constant (d33) and the weighted off-center value (dw) was observed, which may be attributed to the increased dipole motion in the unit cell due to an increased tendency to respond to external stimulation. Furthermore, an improved charge sensor constant (d33) of 140 pC/N was observed for BNT-ST0.20, and a large strain of 0.25% and a d33* value of 443 pm/V were observed from x = 0.30.  相似文献   

2.
We have investigated the Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 (NBT–KBT) system, with its complex perovskite structure, as a promising material for piezoelectric applications. The NBT–KBT samples were synthesized using a solid-state reaction method and characterized with XRD and SEM. Room-temperature XRD showed a gradual change in the crystal structure from tetragonal in the KBT to rhombohedral in the NBT, with the presence of an intermediate morphotropic region in the samples with a compositional fraction x between 0.17 and 0.25. The fitted perovskite lattice parameters confirmed an increase in the size of the crystal lattice from NBT towards KBT, which coincides with an increase in the ionic radii. Electrical measurements on the samples showed that the maximum values of the dielectric constant, the remanent polarization and the piezoelectric coefficient are reached at the morphotropic phase boundary (MPB) (? = 1140 at 1 MHz; Pr = 40 μC/cm2; d33 = 134 pC/N).  相似文献   

3.
A composition-induced pseudocubic–tetragonal structural transition was found to be accompanied by a relaxor phase transformation in xBi(Mg0.5Ti0.5)O3–(0.75  x)PbTiO3–0.25(Bi0.5Na0.5)TiO3 ternary solid solutions. Dielectric and ferroelectric measurements suggest the coexistence of ergodic and nonergodic relaxor phases within a single pseudocubic phase zone for samples with 0.50 < x < 0.51 where large electromechanical strains of up to 0.43% (Smax/Emax = 621 pm/V) can be generated. The mechanism was mainly ascribed to the accumulated effects of field-modulated continuous and reversible transformations from a pseudocubic ergodic phase to a rhombohedral short-range ordered phase (but not nonergodic polar phase), and finally to a long-range ordered ferroelectric tetragonal phase. These procedures were found to be strongly dependent on the applied field magnitudes. These findings were reasonably approved by a couple of measurements such as dielectric–temperature–frequency spectrum, ferroelectric polarization/strain hysteresis loops, polarization current density curves and particularly ex situ Raman spectrum and in situ high-resolution synchrotron X-ray diffraction.  相似文献   

4.
(1-x)Na0.5 Bi0.5 TiO3-xNaNbO3系无铅压电陶瓷的机电性能   总被引:4,自引:1,他引:3  
李月明  陈文  徐庆  方斯琴  顾幸勇 《硅酸盐学报》2005,33(3):366-369,385
采用传统陶瓷的制备方法,制备了(1-x)Na0.5Bi0.5TiO3-xNaNbO3(r=0~0.08)压电陶瓷。X射线衍射分析表明:所研究的组成均能够形成纯钙钛矿(ABOx)型固溶体。不同频率下陶瓷材料的介电常数-温度曲线显示该体系材料具有典型的弛豫铁电体特征,且随着x的增加,其弛豫性特征愈明显。室温下陶瓷材料的饱和电滞回线表明:所研究组成均为铁电体.材料的剩余极化强度P1在x=0.02时具有最大值。检测了不同组成陶瓷的雎电性能,发现材料的压电常数d33和平面机电耦合系数Kp随着x值的增加先增加后降低,在x=0.02时.陶瓷的d33=88pC/N,Kp=0.1792,为所研究组成中的最大值.材料的介电常数εI3/ε0和介电损耗tanδ则随x值的增加而增加。  相似文献   

5.
《Ceramics International》2016,42(12):13783-13789
Lead-free (1−x)(0.0852Bi0.5Na0.5TiO3–0.12Bi0.5K0.5TiO3–0.028BaTiO3)–xCaZrO3 piezoelectric ceramics (BNT−BKT−BT−xCZ, x=0, 0.01, 0.02, 0.03, 0.04 and 0.05) were prepared by using a conventional solid-state reaction method. The effects of CZ-doping on the structural, dielectric, ferroelectric and piezoelectric properties of the BNT−BKT−BT−xCZ system were systematically investigated. The polarization and strain behaviors indicated that the long-range ferroelectric order in the unmodified BNT−BKT−BT ceramics was disrupted by the increase of CZ-doping content, and correspondingly the depolarization temperature (Td) shifted down from 109 °C to below room temperature. When x>0.03, accompanied with the drastic decrease in the remnant polarization (Pr) and piezoelectric coefficient (d33), the electric-field-induced strain was enhanced significantly. A large unipolar strain of 0.35% under an applied electric field of 70 kV/cm (Smax/Emax=500 pm/V) was obtained in the BNT−BKT−BT−0.04CZ ceramics at room temperature, which was attributed to the reversible electric-field-induced phase transition between the relaxor and ferroelectric phases.  相似文献   

6.
This work examines the relaxor behavior of lead-free ceramic (1 − x)Na0.5Bi0.5TiO3xCaTiO3 systems. A stable rhombohedral (R3c) phase is detected at room temperature for all compositions by XRD and Raman spectroscopy. Relaxor behavior was observed in the temperature range 300 K - 400 K for all materials. Ceramics exhibit normal ferroelectric properties at room temperature, and then they develop relaxor characteristics with increasing temperature showing the same dispersive properties. This work quantifies the relaxor phenomenon at low temperature. For instance, the maximum temperature of relaxor and the order of dispersion were determined at the strongest dispersion. Finally, the substitution by low CT concentration unaltered the relaxor behavior at low temperature.  相似文献   

7.
The phase diagram of (1 ? x)(Bi0.5Na0.5)TiO3xSrTiO3 was completed and investigations on polarization and strain in this system were carried out. (1 ? x)(Bi0.5Na0.5)TiO3xSrTiO3-ceramics were prepared by conventional mixed oxide processing. The depolarization temperature (Td), the temperature of the rhombohedral–tetragonal phase transition (Tr–t) and the Curie temperature (Tm) were determined by measuring the temperature dependence of the relative permittivity. All solid solutions of (1 ? x)(Bi0.5Na0.5)TiO3xSrTiO3 show relaxor behavior (A-site relaxor). From XRD-measurements a broad maximum of the lattice parameter can be observed around x = 0.5 but no structural evidence for a morphotropic phase boundary was found. SEM-analysis revealed a decrease of the grain size for increasing SrTiO3-content. At room temperature a maximum of strain of about 0.29% was found at x = 0.25 which coincides with a transition from a ferroelectric to an antiferroelectric phase. The temperature dependence of the displacement indicates an additional contribution from a structural transition (rhombohedral–tetragonal), which would be of certain relevance for the existence of a morphotropic phase boundary.  相似文献   

8.
9.
《Ceramics International》2014,40(6):7947-7951
Lead free (1−x)(0.8Bi0.5Na0.5Ti0.5O3–0.2Bi0.5K0.5TiO3)–xBiZn0.5Ti0.5O3 (x=0–0.06) (BNT–BKT–BZT) thin films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by a sol–gel processing technique. The effects of BZT content on the structural, dielectric, ferroelectric and piezoelectric properties of the BNT–BKT–BZT thin films were investigated systematically. The BNT–BKT–BZT thin films undergo a transition from ferroelectric to relaxor phase with increasing temperature. The phase transition temperature decreases with the increase of BZT content. The BNT–BKT–BZT thin film with x=0.04 exhibits the best ferroelectric properties (Pmax=40 µC/cm2 and Pr=10 µC/cm2), largest dielectric constant (ε=560) and piezoelectric constant (d33=40 pm/V). This finding demonstrates that the BNT–BKT–BZT thin film has an excellent potential for demanding high piezoelectric properties in lead free films.  相似文献   

10.
利用固相法制备了(Na1-xKx)0.5Bi0.5TiO3系压电陶瓷,研究其中Bi3 、Na 、K 离子的挥发对其性能的影响。研究结果表明Bi3 的挥发性对样品的性能影响较大,而Na 、K 离子相对较小。  相似文献   

11.
采用固相法制备了 Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3–BaTiO3–SrTiO3(NBT–KBT–BT–ST)陶瓷,该体系是按(1–2x)(0.8NBT–0.2KBT)–x(0.94NBT–0.06BT)–x(0.74NBT–0.26ST) (x = 0.10、0.20、0.25、0.30、0.35、0.40、0.45)组合而成的,研究了该系陶瓷的结构与电性能。结果表明:所有样品都处于三方–四方准同型相界区域。该系陶瓷在准同型相界附近表现出了优异的压电性能,压电常数 d33、机电耦合系数 kp和剩余极化强度 Pr随 x 的增加先升高后降低,其中 x=0.35 陶瓷的电性能最佳:d33= 210 pC/N,kp= 0.319,Pr= 39.3 μC/cm2,Ec= 20.2 kV/cm,是一种良好的无铅压电陶瓷候选材料。依据准同型相界组成的线性组合规律来寻找具有优异压电性能的 NBT–KBT–BT–ST 陶瓷准同型相界组成是可行的。  相似文献   

12.
《Ceramics International》2016,42(13):14557-14564
A series of NBT-KBT lead-free crystals with dimensions of Φ 35×10 mm were successfully grown by the TSSG method. The as-grown crystals possess rhombohedral perovskite structure at room temperature. The curves ε(T) for all crystals show two abnormal dielectric peaks. The depolarization temperatures Td derived from the first peak of curves tan δ(T) vary with the KBT content, which are 130, 150, 140, and 115 °C respectively, for (100−x)NBT−xKBT (x=5, 8, 12, 15) crystals, being well consistent with the Td obtained from the temperature dependence of kt. A notable thermal hysteresis, ΔT≈35 °C, for ferroelectric-antiferroelectric phase transition was also disclosed for 92NBT-8KBT crystal. The investigation of orientation dependence for electrical properties disclosed the dielectric parameters show weak anisotropy. The piezoelectric constants (d33) are 147, 175, 205, 238 pC/N and the values of kt are 38%, 52%, 52%, 54%, respectively for (100−x)NBT−xKBT (x=5, 8, 12, 15) crystals.  相似文献   

13.
《Ceramics International》2016,42(8):9660-9666
Lead-free 0.99[(1−x)(Bi0.5Na0.5)TiO3-x(Bi0.5K0.5)TiO3]–0.01Ta piezoelectric ceramics were prepared by a conventional solid-state reaction process. The ferroelectric properties, and strain behaviors were characterized. Increase of the (Bi0.5K0.5)TiO3 content induces a phase transition from coexistence of ferroelectric tetragonal and rhombohedral to a relaxor pseudocubic phase. Accordingly, the ferroelectric order is disrupted significantly with the increase of (Bi0.5K0.5)TiO3 content and the destabilization of the ferroelectric order is accompanied by an enhancement of the unipolar strain, which peaks at a value of 0.35% (corresponding to a large signal d33 of 438 pm/V) in samples with 20 mol% (Bi0.5K0.5)TiO3 content. Temperature dependent measurements of both polarization and strain from room temperature to 120 °C suggested that the origin of the large strain is due to a reversible field-induced nonpolar pseudocubic-to-polar ferroelectric phase transformation.  相似文献   

14.
《Ceramics International》2016,42(11):12964-12970
Lead-free 0.99[(1−x) Bi0.5(Na0.80K0.20)0.5TiO3xBiFeO3]–0.01(K0.5Na0.5)NbO3 (BNKT20–100xBF–1KNN) piezoelectric ceramics were fabricated through conventional techniques. Results showed that changes in BF content of BNKT20–100xBF–1KNN induced transition from the ferroelectric phase to the ergodic relaxor phase. These changes also significantly disrupted long-range ferroelectric order, thereby correspondingly adjusting the ferroelectric-relaxor transition point TF-R to room temperature. A large strain of 0.39% at the electric-field of 80 kV/cm (corresponding to a large signal d33* of 488 pm/V) was obtained at x=0.06, which originated from the composition proximity to the ferroelectric-relaxor phase boundary. Moreover, the high-strain material exhibited exceptional fatigue resistance (up to 106 cycles) as a result of the reversible field-induced phase transition. The proposed material exhibits potential for novel ultra-large stroke and nonlinear actuators that require enhanced cycling reliability.  相似文献   

15.
Ceramics with perovskite-type structure and 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 (BNBT) composition have been studied by conventional powder X-ray diffraction in Bragg–Brentano geometry. Ceramics were obtained from sol–gel autocombustion nanopowders and processed either by hot pressing and subsequent recrystallisation or pressureless sintering in two steps. These methods provided single-phase, sub-micron grain size (<700?nm), dense ceramics with good piezoelectric performance (96–94% of theoretical density and d33?=?143–124?pC?N–1, respectively). For the considered ceramics, the splitting of the peaks of the cubic perovskite-type structure with 111 and 200 Miller indices has been repeatedly used as a symmetry identification criterion. In this work a simple, yet powerful, procedure to validate the consistency of the mentioned splitting interpretation is presented. Based on peaks fitting and well-known crystallographic expressions, the rhombohedral and tetragonal symmetries' coexistence is verified. The suggested procedure can be applied to the study of peak splitting in ceramics at Morphotropic Phase Boundaries in a general way. In a given series of BNBT ceramics, inconsistencies for interplanar distances, intensities' ratios and the evolution of these from not-poled to poled samples have been found. In poled ceramics, special care has been taken when carrying out this analysis, due to the anisotropic strains arising from ferroelectric (FE) domain orientation. Poling gives rise to a displacement of the peaks angular positions and modification of the intensity ratios. However, the interplanar distance changes associated with the angular deviations here observed are one order of magnitude higher than those expected from anisotropic strains. These results set up a doubt on the sufficiency of the [rhombohedral?+?tetragonal] model to characterise the considered ceramics. A model of a mesoscopic FE phase with rhombohedral symmetry, a mesoscopic and globally weakly polar phase, with cubic symmetry, and a nanosised phase, also cubic, is presented as a plausible alternative.  相似文献   

16.
《Ceramics International》2017,43(10):7653-7659
Lead-free (1−x)(0.75Bi0.5Na0.5TiO3–0.25Bi0.5K0.5TiO3)–xBiAlO3 (BNT–BKT–100xBA, x=0–0.10) ceramics were prepared by two-step sintering method and their phase structure, micro morphology and electrical properties were systematically investigated. X-ray diffraction analysis indicates a pure perovskite phase for x≤0.06 as well as a structural evolution from a tetragonal toward a pseudocubic phase. Transmission electron microscopy study of the x=0.04 composition reveals the existence of antiferroelectric phase with a0a0c+ oxygen octahedron tilting which is in the form of nano-domains. Polarization-electric field and current-electric field hysteresis loops demonstrate that the increase of BA concentration destroys the ferroelectric order and strengthens antiferroelectric order. A much enhanced energy storage density of 1.15 J/cm3 and efficiency of 73.2% is achieved under 105 kV/cm at x=0.06. In addition, its energy storage property is found to depend weakly on temperature within the measurement range of 25–150 °C.  相似文献   

17.
溶胶-凝胶法合成(Na0.5Bi0.5)TiO3微粉   总被引:1,自引:0,他引:1  
以钛酸四丁酯、硝酸铋、醋酸钠和冰醋酸为原料,利用溶胶-凝胶工艺得到透明凝胶,经干燥后煅烧成(Na0.5Bi0.5)TiO3微粉。通过对溶胶体系水/醇盐的摩尔比、初始pH值及胶凝温度对(Na0.5Bi0.5)TiO3凝胶体系溶胶-凝胶形成过程影响的研究,发现水/醇盐比R在35≤R≤60,pH在2.2~3.5,反应温度在40~60℃时,能够得到透明的溶胶;通过TG-DTA、SEM、X-ray等分析手段对(Na0.5Bi0.5)TiO3粉体进行测试,表明在650℃合成1h可以得到单一钙钛矿(Na0.5Bi0.5)TiO3晶体;采用TEM对(Na0.5Bi0.5)TiO3干凝胶粉体分析其粒径大小约为10nm。  相似文献   

18.
The (0.94–x)Bi0.5Na0.5TiO3–0.06BaTiO3–x(Sr0.7Bi0.20.1)TiO3 (BNT–BT–xSBT, 0  x  0.24) solid solution ceramics were synthesized via a conventional solid–state reaction method and the correlation of phase structure, piezoelectric, ferroelectric properties and electrocaloric effect (ECE) was investigated in detail. The ECE in lead–free BNT–BT–xSBT ceramics was measured directly using a home–made adiabatic calorimeter with maximum adiabatic temperature change ΔT = 0.4 K with x = 0.08 under the electric field E = 6 kV/mm at room temperature. The position of maximum ECE was found in the vicinity of nonergodic and ergodic phase boundary, where the maximum change in entropy occurs as a result of the field–induced phase transformation between the ergodic and long–range ferroelectric phase. Besides, the mechanism for the shift of ECE peak is discussed in detail. Finally, the temperature dependence of ECE for BNT–BT–xSBT (x = 0, 0.04 and 0.08) was also investigated. This work may present a guideline for designing BNT–based ferroelectric relaxor ceramics for EC cooling technologies.  相似文献   

19.
In this work, solid solutions of (0.88–x)Bi0.5Na0.5TiO3–0.12BaTiO3– xBa(Ti0.5Ni0.5)O3–δ were designed and prepared. These compositions exhibit ferroelectricity at room temperature, with the tetragonal symmetry. The c/a values are varied from ~1.0067 (x?=?0.1) to ~1.0208 (x?=?0.04). A transition from the high–temperature relaxor state to the low–temperature ferroelectric state is demonstrated by the temperature dependence of dielectric data and Raman spectrum. The direct bandgap decreases from 3.40?eV for x?=?0 to 3.16?eV for x?=?0.1. The Ba(Ti0.5Ni0.5)O3–δ addition leads an additional optical absorption peak in the visible range. The obvious photodielectric effect was discovered. In particular, the relative permittivity of the x?=?0.1 composition rises from ~756 to ~807 under light illumination.  相似文献   

20.
Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3系无铅压电陶瓷的制备工艺研究   总被引:12,自引:0,他引:12  
利用XRD、SEM等分析技术 ,研究了Na0 .5Bi0 .5TiO3 -K0 .5Bi0 .5TiO3 系无铅压电陶瓷的合成温度 ,烧成工艺条件对陶瓷晶体结构、压电性能的影响。结果表明 ,合成温度提高有利于主晶相的形成 ,适当延长保温时间有利于材料的压电性能。该体系随着KBT含量的增加 ,烧结温度提高 ,烧结温度范围变窄。同时研究了极化工艺条件对材料压电性能的影响表明 ,提高极化电场和适当提高极化温度有利于压电性能的提高 ,但过高的温度由于受到材料高温下退极化的影响而导致材料压电性能变差  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号