首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Hydrothermally synthesized ZnS nanopowders comprising small and large particles were used to synthesize ZnS ceramics. Small particles (200 nm) existed in the gaps between the large particles (0.7 μm) and assisted the densification of the ZnS ceramics. ZnS ceramics sintered at low temperatures (<1000°C) exhibited small grains with large grain-boundary areas that provided diffusion paths for carbon ions from the graphite mold, resulting in carbonate absorption bands. ZnS ceramics sintered at high temperatures (≥1000°C) for a long time (≥2.0 hours) exhibited a dense microstructure with very large grains (>500 μm). The ZnS liquid phase, which was formed at approximately 980°C, assisted the densification and grain growth of the ZnS ceramics. A 3.0-mm-thick ZnS ceramic sintered at 1000°C for 16 hours showed a high Knoop hardness (321 kgf/mm2) and a high transmittance of 71% in the wavelength range 6.0-12 μm without carbonate absorption bands.  相似文献   

2.
In this study, transparent ZnS ceramics were hot pressed from precipitated wurtzite nanopowders. Influences of sintering temperature on wurtzite‐to‐sphalerite phase transition and densification behavior have been investigated. Maximum sphalerite phase content and highest densification were simultaneously obtained in the sample hot pressed at 900°C with uniaxial pressure of 250 MPa for 2 h, which accounts for the highest transmittance above 55% and 70% in the range 2–5 μm and 5–13 μm, respectively. Preferred orientation of wurtzite grains in [002] direction paralleled to the press direction was also observed, which is supposed to be benefit to transmittance by reducing birefraction and second‐phase scattering. Furthermore, second‐phase scattering caused by wurtzite grains has been investigated. It is found that fine grains are conducive to hot‐pressed ZnS ceramics with high transmittance, especially in the short‐wavelength range.  相似文献   

3.
Highly transparent yttrium titanate (Y2Ti2O7) ceramics were fabricated by vacuum sintering using co-precipitated powders for the first time. The effects of the powder calcination temperature on the phase composition, morphology of the calcined powders, and on the microstructure and transmittance of the Y2Ti2O7 ceramics were investigated. When the calcination temperature was above 850 °C, pure phase Y2Ti2O7 nanopowders with high sintering activity were obtained. Transparent Y2Ti2O7 ceramics were obtained after vacuum sintered at 1600 °C for 6 h and annealed at 1100 °C for 5 h in air. The highest transmittance reached 73% at 1000 nm when the calcination temperature was 1150 °C. The measured refractive index of Y2Ti2O7 ceramics was higher than 2.24 at the wavelength range of 350–1000 nm, making it a promising candidate for optical devices.  相似文献   

4.
《Ceramics International》2020,46(10):16285-16290
Tailoring phase transition and microstructural evolution during sintering is crucial for the fabrication of ZnS ceramics transparent to infrared (IR) radiation. Herein, we have described the phase transition, microstructure, and related IR transmission of spark-plasma-sintered ZnS ceramics in terms of sintering temperature and pressure. The pore characteristics of spark-plasma-sintered ZnS ceramics were evaluated using Mie scattering theory. Changes in hexagonality and residual pore characteristics of the microstructure affected IR transmission of the sintered specimens. High temperature and pressure condition of SPS were found to increase excessive hexagonal phase (>20%), mainly contributing to a transmittance decay in the range 2–4 μm.  相似文献   

5.
Fe:ZnSe nanopowders were synthesized via the co-precipitation method for fabricating transparent ceramics. FexZn1−xSe (0.00 ≤ x ≤ 0.06) powders that were calcined at 400°C yielded a single-phased cubic ZnSe, but when the calcination temperature was raised to 500-600°C, ZnO phase was created. Introduction of pressure could avoid appearance of ZnO. XRD Scherrer analysis revealed a monotonic increase in lattice parameter with increasing Fe2+ content. The average powder particle size increased with calcination temperature from several nanometers at 80°C to hundreds of nanometers at 600°C. Attempts to pressurelessly sinter ZnSe powders resulted in the partial decomposition of ZnSe, thus spark plasma sintering was employed to sinter Fe0.01Zn0.99Se transparent ceramics with pure ZnSe phase composition, which could be well sintered at 950°C for 30 minutes under an applied pressure of 60 MPa. SEM observations of the polished and thermally etched microstructure of the ceramic revealed a dense microstructure with average grain size of approximately 35 μm, and a few micropores were observed at the grain boundaries. The transparent ceramic exhibited good transmittance in the mid-far infrared range, with the highest transmittance 57% at 12 μm. This paper confirmed the scheme of synthesis of Fe:ZnSe nanopowders by liquid-phase co-precipitation method for sintering transparent ceramics.  相似文献   

6.
In this study, ZnS powders with homogeneous morphology were synthesized using a colloidal processing method. Vacuum hot pressing was subsequently applied to consolidate the ZnS powders into infrared transparent ceramics (77.3% transmittance at wavelengths of 6.74 and 9.29 μm). The phase composition of the sintered ZnS suggests the presence of wurtzite as a minor phase in addition to the primary sphalerite phase, and microstructural analysis indicates that the ceramics are highly densified. It has been found that the VHP‐sintered ZnS ceramics exhibit blue (450 nm) and green (530 nm) luminescence, which is due to the formation of zinc vacancies and sulfur interstitials, respectively, during the sintering process.  相似文献   

7.
Due to the sensitivity of nanopowders and the challenges in controlling the grain size and the density during the sintering of ceramics, a systematic study was proposed to evaluate the densification and the microstructure of ZnO ceramics using spark plasma sintering technique. Commercially available ZnO powder was dried and sintered at various parameters (temperature (400–900?°C), pressure (250–850?MPa), atmosphere (Air/Vacuum) etc.). High pressure sintering is desirable for maintaining the nanostructure, though it brings a difficulty in obtaining a fully dense ceramic. Whereas, increasing the temperature from 600 to 900?°C results in fully densified ceramics of about 99% which shows to have big impact on the grain size. However, a high relative density of 92% is obtained at a temperature as low as 400?°C under a pressure of 850?MPa. The application of pressure during the holding time seems to lower the grain size as compared to ceramics pressed during initial stage (room temperature).  相似文献   

8.
The phase transition behavior of zinc sulfide (ZnS) ceramics consolidated via pressureless and hot press sintering has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD) analyses. Two types of ZnS powders with different particle sizes and morphologies were employed to study the influence of microstructural features of starting powders on the ZnS phase transition behaviors. The present work has revealed that during sintering of ZnS ceramics, the phase transition behavior varies based on the starting powder particle size and magnitude of the applied pressure. It has been demonstrated that smaller particle sizes lead to an increased degree of “early” phase transformation from sphalerite to wurtzite at 1000 °C. Additionally, the application of uniaxial pressure during sintering can lead to a reverse phase transition from wurtzite to sphalerite while simultaneously inducing twinning, resulting in improved optical transmittance and mechanical hardness.  相似文献   

9.
Abstract

Hydroxyapatites (HA) have good biocompatibility and are used as bioceramics for artificial bones. The application areas can be extended further if transparent and dense HA ceramics can be prepared. The preparation of dense and transparent HA ceramics were attempted using a spark plasma sintering technique at relatively low temperatures (900–1000°C) under a pressure of 80 MPa for a short time of 10 min. The sintered body was almost fully dense (>99%) and transparent with a transmittance >70%. The microstructure was examined by SEM, TEM, STEM and EDX. The HA ceramics exhibited a microstructure with grains, approximately 100 nm size. A number of intragranular voids, 5–10 nm in size, with flat boundaries were also observed. The voids were believed to have been generated by evaporation during spark plasma sintering and were stabilised during cooling. The grain boundaries were clean without a glassy phase.  相似文献   

10.
《Ceramics International》2022,48(4):4754-4762
Four different alumina content of mullite ceramics were fabricated by powders synthesized using the sol-gel method. The synthesis process of powders, microstructure evolution, mechanical and optical properties of the mullite ceramics were studied. The XRD results showed that the precursors transformed into aluminosilicate spinel phase at 1000 °C and mullite phase at 1200 °C. Equiaxial grains were easy to form in the alumina-rich mullite ceramics while elongated grains were easy to form in the alumina-poor mullite ceramics. With the increase of alumina content, the grain size of the samples firstly increased and then decreased, the number of elongated grains decreased while equiaxed grains increased. The flexural strength, compression strength, fracture toughness, and Vickers hardness all decreased firstly and then increased. While the infrared transmittance increased firstly and then decreased. The transmittance at 4 μm (thickness of 0.75 mm) of the ceramics containing 66mol% Al2O3 reached the highest (72%) when sintered at 1780 °C because of the equiaxial grains.  相似文献   

11.
In this study, fine Y2O3–MgO composite nanopowders were synthesized via the sol–gel method. Dense Y2O3–MgO composite ceramics were fabricated by pre-sintering the green body in air at different temperatures for 1 h and then subjecting the sintered bodies to hot isostatic pressing at 1300°C for 1 h. The effects of pre-sintering temperature on the microstructural, mechanical, and optical properties of the resulting ceramics were studied. The average grain size of the ceramics was increased, whereas their hardness and fracture toughness were decreased with increasing pre-sintering temperature. A maximum fracture toughness of 1.42 MPa·m1/2 and Vickers hardness of 10.4 GPa were obtained. The average flexural strength of the ceramics was 411 MPa at room temperature and reached 361 MPa at 600°C. A transmittance of 84% in the 3–5 µm region was obtained when the composite ceramics were sintered at 1400°C. Moreover, a transmittance of 76% in the 3–5 µm region was obtained at 500°C.  相似文献   

12.
High-toughness mullite ceramics were fabricated through hot-press sintering (HPS) of pyrophyllite and AlOOH, which were wet-milled and well mixed using a planetary ball mill. The impacts of sintering temperatures and contents of AlOOH on mullite phase formation, densification, microstructure and mechanical properties in ceramic materials were investigated through XRD, SEM and mechanical properties determination. The results indicated that high-toughness mullite ceramics could be successfully prepared by HPS at temperatures higher than 1200°C for 120 min. Increasing the sintering temperature from 1000 to 1300°C significantly enhanced the flexural strength and fracture toughness of samples. The highest flexural strength of 297.97±25.32 MPa and fracture toughness of 4.64±0.11 MPa⋅m1/2 were obtained for samples sintered at 1300°C. Further increase of temperature to 1400°C resulted in slight decrease of flexural strength and fracture toughness. Compared with the mullite ceramics prepared only using pyrophyllite as raw material, incorporation of AlOOH into raw material significantly increased the mechanical properties of final mullite ceramics. And stoichiometric AlOOH and pyrophyllite as starting material gave the best performance in fracture toughness. The high-toughness of mullite ceramics were ascribed to the high mullite phase content, fine mullite whiskers and in situ formed, intertwined three-dimensional network structure obtained through HPS at a low temperature of 1300°C.  相似文献   

13.
《Ceramics International》2016,42(11):13285-13290
1 at% Nd, 3 at% Y doped CaF2 transparent ceramics were obtained by hot pressing at the sintering temperature varing from 500 to 800 °C under vacuum environment with co-precipitated CaF2 nanopowders. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis showed that the obtained nanoparticles were single fluorite phase with grain size around 26 nm. Scanning electron microscopy (SEM) observations of the Nd, Y: CaF2 ceramics indicated that the mean grain size of the ceramic sintered at 800 °C was about 748 nm. The influence of the temperature on the grain size, microstructure and optical transmittance was investigated. For the ceramic sintered at 800 °C, the transmittance was 85.49% at the wavelength of 1200 nm. The room temperature emission spectra of Nd: CaF2 and Nd, Y: CaF2 ceramics were measured and discussed.  相似文献   

14.
A type of boron nitride–magnesium aluminum silicate (BN-MAS) composite ceramics was fabricated by hot-press sintering at different sintering temperatures. The relationship between the sintering temperature and microstructure was investigated by analyzing the interaction between hexagonal boron nitride (h-BN) and the MAS phase. The main MAS phase in the composite ceramics is the α-cordierite phase at a sintering temperature of 1300°C. At temperatures above 1400°C, the inhibitory effect of h-BN on the crystallization of the MAS system is significant, and MAS mainly exists in the form of an amorphous phase. The composite sintered at 1700°C exhibited the highest bending strength of 218MPa. h-BN and MAS were co-enhanced. MAS can be used as an effective liquid-phase sintering aid to assist in the sintering of h-BN, whereas h-BN can absorb the fracture energy of the composite ceramics through the pull-out and bridging effect of the particles.  相似文献   

15.
Yb doped (0, 0.02, 0.1 and 0.5 at%) MgO transparent ceramics were synthesized through spark plasma sintering (SPS) at the relatively low temperature of 1100 °C for 5–60 min under a pressure of 105 MPa. The effects of dopant concentration and sintering holding time on the densification and microstructure evolution of MgO ceramics were investigated. All ceramics reached a relative density greater than 99.20%. The 0.02% Yb-doped MgO ceramic sintered at 1100 °C for 60 min showed the highest in-line transmittance, of 80% at 1030 nm, a value close to that of MgO single crystals. Yb dopant improved the transmittance, degree of densification and control of grain growth. Herein, the influence of Yb doping on the crystalline phase and microstructure was explored, and the photoluminescence properties of Yb in transparent MgO ceramics were investigated.  相似文献   

16.
The fabrication of Gd2O3‐MgO nanocomposite optical ceramics via hot‐pressing using sol‐gel derived cubic‐Gd2O3 and MgO nanopowders was investigated. The precursor powder calcined at 600°C had an average particle size of 12 nm. The effects of hot‐pressing temperature on constituent phases, microstructure, mid‐infrared transmittance, and microhardness were studied. The crystallographic modifications of Gd2O3 phase varied with the increase in sintering temperature from 1250 to 1350°C. The monoclinic‐Gd2O3 phase was retained for the composite sintered at 1350°C and the sample had an average grain size of 90 nm, excellent transmission (80.4%‐84.8%) over 3‐6 μm wavelength range, and enhanced hardness value of 14.1 GPa.  相似文献   

17.
In this research, fabrication and characterization of ultraviolet (UV) detectors based on zinc sulfide–reduced graphene oxide (rGO) nanocomposite with the focus on the wurtzite structure of zinc sulfide was carried out. The nanoparticles of ZnS were synthesized using chemical deposition method and annealed at 500?°C under flow of argon. X-ray diffraction pattern showed that ZnS with the wurtzite phase was formed at 500?°C. Here, rGO as a unique material with similar properties to graphene such as high electron transport was used in order to improve the optical properties of ZnS. For this purpose, rGO was added to ZnS with three different weight percentages of 5, 10 and 15. Scanning electron microscopy showed that ZnS nanoparticles were well placed in rGO sheets. The UV–visible spectra of the synthesized composites showed that with increasing rGO in composite, light absorption is increased. Photoluminescence (PL) spectra also showed that with increasing the percentage of rGO the generation of electron-hole in composite was increased and PL peak was enhanced. The effect of elevated generation of electron-hole pairs was apparent in optoelectrical properties of fabricated UV detectors based on the sample with higher concentration of rGO in composite. For this sample, the response time was decreased to 310 ms, and the sensitivity to UV irradiation was increased by 7.7 times.  相似文献   

18.
Fe:ZnSe transparent ceramics were prepared by spark plasma sintering. Fe:ZnSe powders synthesized via co-precipitation yielded well-dispersed particles with an average particle size of 550 nm. These powders were in the cubic phase Fe:ZnSe, indicating the successful substitution of Fe2+ for Zn2+. The highest relative density, 99.4%, was obtained by increasing the pressure and sintering time. The effects of sintering temperature, pressure, and time on the microstructure of SPS prepared ceramics were presented by micrographs. With increasing sintering temperature, from 600°C to 900°C, the average grain size increased from < 1 to 10 μm. The intergranular fracture indicated no neck formation in the sintering process. High pressure was essential for the densification process. The average grain size deceased from approximately 10 to 5 μm when the pressure was increased. Increasing the sintering time from 10 to 120 minutes lead to a change in the microstructure, from inter- to transgranular fracture, and eliminated the micropores. The as-prepared Fe:ZnSe ceramics were composed of single-phased cubic ZnSe. The sample sintered at 900°C under a pressure of 90 MPa for 120 minutes yielded a transmittance of approximately 60% at 1.4 μm and 68% at 7.5 μm and had residual micropores as its main scattering source. There was a strong characteristic absorption peak of Fe2+ ions at around 3 μm, which was red-shifted compared to Fe:ZnS transparent ceramics. Fe:ZnSe transparent ceramics have a reddish-brown color and it could be a promising mid-infrared laser material.  相似文献   

19.
This study aims to fabricate Li2Mg3TiO6 ceramics with ultrafine grains using a novel cold sintering process combined with a post-annealing treatment at a temperature <?950?°C. In this study, phase composition, sintering behavior, microstructure evolution, and microwave dielectric properties of the resultant nanocrystalline ceramics were investigated for the first time. The as-compacted green pellets at 180?°C yielded a high relative density of ~ 90% and the ceramics that were post-sintered over a broad temperature range (800–950?°C) possessed highly dense microstructure with a relative density of ~ 96%. The average grain size varied from 100 to 1200?nm for the samples sintered at 800–950?°C. Furthermore, the quality (Q × f) values of the obtained specimens exhibited a strong positive dependency on the grain size, which increased from 17,790 to 47,960?GHz for grain sizes ranging between 100 and 1200?nm, while the dielectric permittivity (εr) and temperature coefficient of the resonant frequency (τf) values did not undergo any significant changes over this range of grain size.  相似文献   

20.
A CaO‐B2O3‐SiO2 (CBS) glass/40 wt% Al2O3 composite sintered at 900°C exhibited a dense microstructure with a low porosity of 0.21%. This composite contained Al2O3 and anorthite phases, but pure glass sintered at 900°C has small quantities of wollastonite and diopside phases. This composite was measured to have a high bending strength of 323 MPa and thermal conductivity of 3.75 W/(mK). The thermal conductivity increased when the composite was annealed at 850°C after sintering at 900°C, because of the increase in the amount of the anorthite phase. 0.25 wt% graphene oxide and 0.75 wt% multi‐wall carbon nanotubes were added to the CBS/40 wt% Al2O3 composite to further enhance the thermal conductivity and bending strength. The specimen sintered at 900°C and subsequently annealed at 850°C exhibited a large bending strength of 420 MPa and thermal conductivity of 5.51 W/(mK), indicating that it would be a highly effective substrate for a chip‐type supercapacitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号