首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, ultra-low loss Li2MgTi0.7(Mg1/3Nb2/3)0.3O4 ceramics were successfully prepared via the conventional solid-state method. X-ray photoelectron spectroscopy (XPS), thermally stimulated depolarization current (TSDC) and bond energy were used to determine the distinction between intrinsic and extrinsic dielectric loss in (Mg1/3Nb2/3)4+ ions substituted ceramics. The addition of (Mg1/3Nb2/3)4+ ions enhances the bond energy in unit cell without changing the crystal structure of Li2MgTiO4, which results in high Q·f value as an intrinsic factor. The extrinsic factors such as porosity and grain size influence the dielectric loss at lower sintering temperature, while the oxygen vacancies play dominant role when the ceramics densified at 1400?°C. The Li2MgTi0.7(Mg1/3Nb2/3)0.3O4 ceramics sintered at 1400?°C can achieve an excellent combination of microwave dielectric properties: εr =?16.19, Q·f?=?160,000?GHz and τf =??3.14?ppm/°C. In addition, a certain amount of LiF can effectively lower the sintering temperature of the matrix, and the Li2MgTi0.7(Mg1/3Nb2/3)0.3O4-3?wt% LiF ceramics sintered at 1100?°C possess balanced properties with εr?=?16.32, Q·f?=?145,384?GHz and τf =??16.33?ppm/°C.  相似文献   

2.
This work reports the composition dependent microstructure, dielectric, ferroelectric and energy storage properties, and the phase transitions sequence of lead free xBa(Zr0.2Ti0.8)O3-(1-x)(Ba0.7Ca0.3)TiO3 [xBZT-(1-x)BCT] ceramics, with x?=?0.4, 0.5 and 0.6, prepared by solid state reaction method. The XRD and Raman scattering results confirm the coexistence of rhombohedral and tetragonal phases at room temperature (RT). The temperature dependence of Raman scattering spectra, dielectric permittivity and polarization points a first phase transition from ferroelectric rhombohedral phase to ferroelectric tetragonal phase at a temperature (TR-T) of 40?°C and a second phase transition from ferroelectric tetragonal phase - paraelectric pseudocubic phase at a temperature (TT-C) of 110?°C. The dielectric analysis suggests that the phase transition at TT-C is of diffusive type and the BZT-BCT ceramics are a relaxor type ferroelectric materials. The composition induced variation in the temperature dependence of dielectric losses was correlated with full width half maxima (FWHM) of A1, E(LO) Raman mode. The saturation polarization (Ps) ≈8.3?μC/cm2 and coercive fields ≈2.9?kV/cm were found to be optimum at composition x?=?0.6 and is attributed to grain size effect. It is also shown that BZT-BCT ceramics exhibit a fatigue free response up to 105 cycles. The effect of a.c. electric field amplitude and temperature on energy storage density and storage efficiency is also discussed. The presence of high TT-C (110?°C), a high dielectric constant (εr ≈?12,285) with low dielectric loss (0.03), good polarization (Ps ≈?8.3?μC/cm2) and large recoverable energy density (W?=?121?mJ/cm3) with an energy storage efficiency (η) of 70% at an electric field of 25?kV/cm in 0.6BZT-0.4BCT ceramics make them suitable candidates for energy storage capacitor applications.  相似文献   

3.
Structure-property relationship of co-substituted (Mg2+1/4Mo6+3/4)5+, (Al3+1/3Mo6+2/3)5+, (Si4+1/2Mo6+1/2)5+, (Zr4+1/2Mo6+1/2)5+ for Nb5+ in NdNbO4 ceramics was investigated systematically. The remarkable differences in dielectric properties of each composition originated from their bond characteristics and structure stability. The elongated/compressed bonds have an effect on the cell volume and polarization. And the average bond covalency of Nb-O bond was responsible for the development of permittivity. Q×f values and the total lattice energy went up to maximum when (Si0.5Mo0.5) occupied Nb-site. Variations of lattice energy together with Nb-O bond energy suggest that a more stable structure was obtained through co-substitution. The optimal microwave dielectric properties is: εr =?18.97, Q×f?=?49466?GHz, τf =?7.34?ppm/°C for NdNb0.97(Si0.5Mo0.5)0.03O4, sintered at 1250?°C.  相似文献   

4.
Ceramics with temperature-stable dielectric characteristics have been developed in the system: 0.6[0.85Na0.5Bi0.5TiO3-(0.15-x)Ba0.8Ca0.2TiO3-xBi(Mg0.5Ti0.5)O3]?0.4NaNbO3, x ≤ 0.15. Dielectric measurements exhibited relaxor ferroelectric characteristics with temperature-stable relative permittivity from εr~1330 ± 15% in the temperature range from ?70?°C to 215?°C and tanδ ≤ 0.02 from ?20?°C to 380?°C for x = 0 compositions. For the Bi(Mg0.5Ti0.5)O3 modified compositions the temperature range of stable relative permittivity extended from ?70?°C to 400?°C, with εr ~ 950 ± 15% and tanδ ≤ 0.02 from ?70?°C to 260?°C. Values of dc resistivity were ~ 108 Ω?m at a temperature of 300?°C and the corresponding RC constant values were in the range from 0.40 ? 0.78?s at 300?°C. All ceramic samples exhibited a linear polarisation-electric field response at maximum applied electric field of 5?kV/cm (1?kHz).  相似文献   

5.
Low-firing (Zn0.9Mg0.1)1?xCoxTiO3 (x = 0.02–0.10) (ZMCxT) microwave dielectric ceramics with high temperature stability were synthesized via conventional solid-state reaction. The influences of Co2O3 substitution on the phase composition, microstructure and microwave dielectric properties of ZMCxT ceramics were discussed. Rietveld refinement results show the coexistence of ZnTiO3 and ZnB2O4 phases at x = 0.02–0.10. (Zn0.9Mg0.1)1?xCoxTiO3 ceramic with x = 0.06 (ZMC0.06T) obtains the best combination microwave dielectric properties of: εr = 21.58, Q × f = 53,948 GHz, τf = ? 54.38 ppm/°C. For expanding its application in LTCC field, 3 wt% ZnO-B2O3-SiO2 (ZBS) and 9 wt% TiO2 was added into ZMC0.06T ceramic, great microwave dielectric properties were achieved at 900 °C for 4 h: εr = 26.03, Q × f = 34,830 GHz, τf = ? 4 ppm/°C, making the composite ceramic a promising candidate for LTCC industry.  相似文献   

6.
CaCu3-xZnxTi4.1O12 (x?=?0.00, 0.05 and 0.10) precursor powders were prepared by the polymer pyrolysis (PP) solution method. Ultra-stable X9R type capacitor with very low loss tangent (tanδ) ~0.017 varied within a value of less than 0.05 in a wide temperature range of ?60 to 150?°C and high dielectric constants (ε) ~9200 with Δε′ ≤?±?15% in a wide temperature range of ?60 to 210?°C was achieved in CaCu2.95Zn0.05Ti4.1O12 (Zn05-1) ceramic obtained by sintering the precursor powder (x?=?0.05) at 1060?°C for 8?h. A major role for the validity of ε and tanδ in these wider temperature ranges was suggested to originated from the very high grain boundary resistance (Rgb ~413,190?Ω?cm), resulting from the effect of Zn2+ doping and TiO2-rich at grain boundary. With the excellent dielectric properties of (Zn05-1) ceramic, it was suggested to be applied for X8R and X9R capacitors. Interestingly, improvements of nonlinear properties with very high nonlinear coefficient (α ~ 25.94) and breakdown field (Eb~ 3146.25?V.cm?1) values were achieved in (Zn05-1) ceramic, as well.  相似文献   

7.
The phase composition, microstructure, microwave dielectric properties of (Al0.5Nb0.5)4+ co-substitution for Ti site in LiNb0.6Ti0.5O3 ceramics and the low temperature sintering behaviors of Li2O-B2O3-SiO2 (LBS) glass were systematically discussed. XRD patterns and EDS analysis result confirmed that single phase of Li1.075Nb0.625Ti0.45O3 solid solution was formed in all component. The increase of dielectric constant (εr) is ascribed to the improvement of bulk density. The restricted growth of grain has a negative influence on quality factor (Q×f) value. The τf value could be continuously shifted to near zero as the doping content increases. Great microwave dielectric properties were obtained in LiNb0.6Ti(0.5-x)(Al0.5Nb0.5)xO3 ceramics (x?=?0.10) when sintered at 1100?℃ for 2?h: εr =?70.34, Q×f =?5144?GHz, τf =?4.8?ppm/℃. The sintering aid, LBS glass, can effectively reduce the temperature and remain satisfied microwave performance. Excellent microwave dielectric properties for x?=?0.10 were obtained with 1.0?wt% glass: εr =?70.16, Q×f =?4153?GHz (at 4?GHz), τf =?-0.65?ppm/℃ when sintered at 925?℃ for 2?h.  相似文献   

8.
Tungsten trioxide (WO3) ceramics were prepared by firing Bi2O3-added WO3 compacts with atomic ratios of Bi/W?=?0.00, 0.01, 0.03, or 0.05, in which Bi2O3 was mixed as a sintering agent. Dense ceramics consisting of remarkably grown WO3 grains were obtained for Bi-containing samples with Bi/W?=?0.01, 0.03, and 0.05. The grain growth was enhanced by the liquid phase of Bi2W2O9 formed among the WO3 grains while firing. The XRD patterns did not show evidence for Bi inclusion into the WO3 lattice, but the SEM-EDX showed an intensive distribution of Bi into the grain boundaries. Electrical conductivity σ and Seebeck coefficient S were measured in a temperature range of 373–1073?K. The temperature dependences indicated that the Bi2O3-added WO3 ceramics were n-type semiconductors. It was considered that the electron carriers were generated from oxygen vacancies included into the WO3 grains. The thermoelectric power factors S2σ for the ceramics ranged from 1.5?×?10?7 W?m?1 K?2 to 2.8?×?10?5 W?m?1 K?2, and the highest value occurred at 970?K for the ceramic with Bi/W?=?0.01.  相似文献   

9.
The paper reports highest obtained dielectric constant for Ni-doped Lead Zirconate Titanate [PZT, Pb(Zr0.52Ti0.48)O3] ceramics. The Ni-doped PZT ceramic pellets were prepared via conventional solid-state reaction method with Ni content chosen in the range 0–20?at%. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were employed to investigate the crystal structure of the prepared ceramics. The X-ray diffraction analysis indicated that the ceramic pellets had crystallized into tetragonal perovskite structure. A minute displacement of XRD peaks was detected in the diffraction spectra of Ni-doped PZT ceramic samples which when examined by size-strain plot (SSP) method revealed presence of homogenous strain that decreased with increase in concentration of Ni. In FTIR the maximum absorption at 597?cm?1, 608?cm?1, 611?cm?1, 605 and 613?cm?1 for Ni?=?0, 5, 10, 15 and 20?at%, respectively, confirmed the formation of perovskite structure in all the compositions and the slight shift suggests decrease in cell size on doping. The values of dielectric constant (ε′) & tanδ as a function of frequency and temperature were measured for the prepared ceramics and it revealed highest ever reported dielectric constant for Ni - doped PZT with Ni?=?5?at%. The dielectric variation with temperature exhibited a diffused type ferroelectric–paraelectric phase transition for the doped samples. Also, the maximum dielectric constant value (εmax) decreased while the phase transition temperature increased with increase in doping concentration of Ni. The estimated activation energy of different compositions was found to increase from 0.057 to 0.068?eV for x?=?0.00 to x?=?0.20 in ferroelectric phase. The piezoelectric, ferroelectric and magnetic properties were also investigated.  相似文献   

10.
Novel low-temperature fired Li3Mg2Nb1-xVxO6 (x?=?0.02??0.08) microwave dielectric ceramics were synthetized by the partial substitution of V5+ ions on the Nb5+ sites. The effects of V5+ substitution on structure and microwave dielectric properties were investigated in detail. XRD patterns and Rietveld refinement demonstrated that all of the samples exhibited a single orthorhombic structure. The structural characteristics such as the polarizability, packing fraction and NbO6 octahedron distortion were determined to establish the correlations between the structure and the microwave dielectric characteristics. The ?r values presented a tendency similar to that of the polarizability. The high Q×f values were mainly attributed to the effects of the grain sizes and density rather than the packing fraction. The variation in the τf values was attributed to NbO6 octahedron distortion. Notably, the Li3Mg2Nb1-xVxO6 (x?=?0.02) ceramics sintered at 900?°C had outstanding microwave dielectric properties: εr=?16, Q×f=?131,000?GHz (9.63?GHz), and τf=???26?ppm/°C, making these ceramics promising ultralow loss candidates for low temperature co-fired ceramics (LTCC) applications.  相似文献   

11.
The Li2MgTi1-x(Mg1/3Nb2/3)xO4 (0?≤x?≤?0.5) ceramics were prepared by the conventional solid-state method. The relationship among phase composition, substitution amount and microwave dielectric properties of the ceramics was symmetrically investigated. All the samples possess the rock salt structure with the space group of Fm-3m. As the x value increases from 0 to 0.5, the dielectric constant linearly decreases from 16.75 to 15.56, which can be explained by the variation of Raman spectra and infrared spectra. The Q·f value shows an upward tendency in the range of 0?≤x?≤?0.3, but it then decreases when x?>?0.3. In addition, the temperature coefficient of resonant frequency (τf) is shifted toward zero with the increasing (Mg1/3Nb2/3)4+ addition. By comparison, the Li2MgTi0.7(Mg1/3Nb2/3)0.3O4 ceramics sintered at 1400?°C can achieve an excellent combination of microwave dielectric properties: εr=?16.19, Q·f =?160,000?GHz and τf =??3.14?ppm/°C.  相似文献   

12.
MnO2-doped 0.99(0.36BiScO3-0.64PbTi1-xCexO3)-0.01Bi(Zn0.5Ti0.5)O3 (BS-PTC-BZT-MnO2) ceramics are fabricated by the solid-state method. Here, it's firstly reported that Ce element can reduce dielectric loss (tan δ) and suppress the decrease of piezoelectric constant (d33) simultaneously. Effects of Ce contents on the structure and electrical properties of BS-PTC-BZT-MnO2 ceramics are studied. The ceramics (x?=?0.02) with MPB (rhombohedral-tetragonal) possess low dielectric loss (tan δ?=?1.36%, 1?kHz) and high piezoelectric constant (d33 =?360 pC/N) simultaneously, which is superior to most reported BS-PT. Besides, excellent comprehensive properties including high Curie temperature (TC =?422?°C), large dielectric constant (?r =?1324), and high remnant polarization (Pr =?35.1?µC/cm2) are obtained. Asymmetric S-E and P-E hysteresis loops indicate that defects and oxygen vacancies are induced by multi-valence elements (Ce and Mn), which is the origin for reducing tan δ. In addition, good thermal stability of piezoelectric and dielectric properties is observed. These results indicate that Ce and Mn co-doped BS-PTC-BZT-MnO2 ceramics can be well applied as power electronic devices under high temperature.  相似文献   

13.
Orthorhombic Sc2Mo3O12 films have been successfully prepared via spin coating technique followed by annealing at 500–750 °C. The phase composition, microstructure, morphology and negative thermal behavior of the synthesized Sc2Mo3O12 films were investigated. XRD and XPS analysis indicate that as-deposited film is amorphous. Orthorhombic Sc2Mo3O12 films can be prepared after post-annealing at 500–750 °C for 1 h. The crystallinity of Sc2Mo3O12 films gradually improved with the increase of post-annealing temperature. SEM analysis shows as-deposited film is smooth and compact, and the grain size of Sc2Mo3O12 film grows up as the post-annealing temperature increases. Variable temperature XRD analysis demonstrates that the synthesized orthorhombic Sc2Mo3O12 films show stable thermo-chemical and anisotropic NTE property in 25–700 °C. The corresponding coefficients of thermal expansion (CTEs) of the orthorhombic Sc2Mo3O12 film in a, b and c directions are ?6.68 × 10?6 °C?1, 5.08 × 10?6 °C?1 and ?4.76 × 10?6 °C?1, respectively. The whole unit cell of the orthorhombic Sc2Mo3O12 film shrinks and the volumetric CTE of the Sc2Mo3O12 thin film is ?6.36 × 10?6 °C?1, and the linear CTE is about ?2.12 × 10?6 °C?1 (αv = 3αl).  相似文献   

14.
Pb0.325Sr0.675Ti1-xMnxO3 ceramics (x?=?0, 0.001, 0.005, 0.01, and 0.05) were successfully prepared by traditional solid-state reaction method. It was found that the lattice constant calculated through Rietveld refinement initially increased and then decreased with increasing Mn content, which was attributed to the variation in valence state of Mn and Ti ions. The microstructure gradually varied from the coexistence of large grains and fine grains for x?=?0 to the uniform grain for x?=?0.05 by increasing the doping Mn ions. With increasing Mn content from x?=?0 to x?=?0.05, the Curie temperature (Tc) dramatically decreased from 25?°C to ??40?°C and dielectric maximum decreased from 27,100 to 13,200. Pb0.325Sr0.675Ti1-xMnxO3 ceramics with x?=?0.001 showed the lowest dielectric loss of 0.006 with a relatively high dielectric peak value of ~ 21,000. The grain boundaries resistance obtained from the complex impedance decreased with the increase of Mn content. The decrease in resistance was ascribed to oxygen vacancies and electronics produced by the change of ionic valence state. X-ray photoemission spectroscopy revealed that Ti ions were Ti4+ and the valences of Mn ions were deduced to be mainly in the form of Mn2+ and/or Mn3+ for ceramics with low content of Mn, while the Ti ions were in the form of Ti3+ and Ti4+ and Mn ions were diverse valence states with the coexistence of Mn2+, Mn3+, and Mn4+ for ceramics with x?=?0.01 and 0.05.  相似文献   

15.
The influence of BaO content (up to 15?mol%) on the crystallization behaviour, structure, thermal properties and microwave dielectric properties of the BaO-CaO-B2O3-SiO2 glasses and glass-ceramics system was investigated. The glasses were produced by melting at 1400?°C and quenching into water, and the glass-ceramics were produced via heat treatment at temperatures between 750 and 800?°C. The results of X-ray diffraction analysis showed that increasing the BaO content raised the resistance of the glass against crystallization and favoured the transformation of β-CaSiO3 and α-CaSiO3 phases, which crystallized in the Ba-free and in low BaO content compositions, into SiO2 and Ba4Si6O16, which crystallized in compositions with higher concentrations of BaO. The BaO content had little influence on the glass transition temperature (Tg) and the linear coefficient of thermal expansion (CTE), but strongly reduced the softening point (Ts). Even the addition of BaO as minor additives resulted in a dramatic reduction of the Ts; for example, the Ts decreased from 902?°C for the Ba-free composition to 682?°C for the BaO-containing one (5%). Low values of the dielectric constant (5.9?≤?εr ≤?6.63) and dielectric loss (1.12?×?10?3 ≤?tanδ?≤?3.15?×?10?3) were measured.  相似文献   

16.
The Zn1.8SiO3.8 (ZS) ceramics with BaCu(B2O5) (BCB) additive were synthesized by the conventional solid-state reaction route and the effect of BCB additive on the microwave dielectric properties of the ceramics was investigated. The results demonstrate that BCB could effectively decrease the sintering temperature from 1300?°C to 930?°C and does not induce obviously degradation of the microwave dielectric properties. The 6.wt% BCB added ZS ceramics exhibited a low sintering temperature (~ 930?°C) and excellent dielectric properties of εr =?6.79, Q×f =?33,648?GHz, and τf =??30?ppm/°C. To compensate the negative τf value of this system, TiO2 powders were introduced. Particularly when 10.wt% TiO2 was added, good microwave dielectric properties of εr=?8.175, Q×f=?21,252?GHz, and τf =?1.2?ppm/°C were obtained for the 6.wt% BCB added ZS ceramic sintered at 930?°C for 3?h. Moreover, BCB added ZS-TiO2 ceramics have a chemical compatibility with silver, which indicate that the BCB added ZS ceramics are promising candidate for LTCC applications.  相似文献   

17.
Highly (l00)-oriented Ni-doped Na0.5Bi0.5TiO3 (NBTNi) thin films with different A-site cation nonstoichiometry were deposited on the LaNiO3 (100)/Si substrates. We find that low levels of Na/Bi nonstoichiometry in the original composition of NBTNi films have obvious influence on the crystal structure and ferro-/dielectric properties. Na deficiency or Bi excess can lower the leakage current compared to the stoichiometric sample due to the decreased oxide-site vacancies. However, the mechanisms for the two types of films are different. That is, the mobile oxygen vacancies are tied by the Na vacancies in Na deficiency film whereas the formation of oxygen vacancies is suppressed for Bi-rich film. A good combination of ferroelectric property (Pr = 22.7?μC/cm2) and dielectric property (εr = 360 and tan?δ?=?0.11) can be achieved in Bi-rich NBTNi (Na0.5Bi0.54TNi) film. Besides, the effect of voltage and frequency on the capacitance and dielectric tunability for the Na0.5Bi0.54TNi film is investigated solely. These results show that NBT-based thin film is quite flexible in A-site nonstoichiometry, which provides a broad space for performance improvement.  相似文献   

18.
In this paper, dense 0.9Al2O3 ??0.1TiO2 ceramics with highly improved microwave dielectric properties were prepared by a noncontaminated direct coagulation casting (DCC) method. The suspension was destabilized and coagulated by consumption of the dispersant without introducing impurity ions. The effect of dispersant content, pH value and solid loading on the rheological properties of 0.9Al2O3 ??0.1TiO2 suspension was investigated. It was found that 0.9Al2O3 ??0.1TiO2 suspension with a high solid loading of 50?vol% and low viscosity of 0.7?Pa?s could be prepared by adding 0.5?wt% TMAOH at the pH in the range of 10–12. The suspension was coagulated by adding 2?vol% GDA when it was treated at 60 ~ 80?°C for 40 ~ 60?min. Compared with dry pressing method, more homogeneous and denser microstructure could be obtained in 0.9A12O3 ??0.1TiO2 ceramics prepared by DCC via dispersant reaction which were sintered at 1550?°C for 3?h and annealed at 1100?°C for 5?h. The Al2TiO5 second phase in 0.9A12O3 ??0.1TiO2 ceramics prepared by DCC via dispersant reaction could be eliminated more easily by annealing treatment. After annealing treatment, only Al2O3 and TiO2 phases could be detected. Therefore, higher density and much better microwave dielectric properties with ρ?=? 3.81?±?0.02?g/cm3, εr =?12.17?±?0.02, Q ×?f =?25,637?±?749?GHz, τf =?13.12?±?1.62?ppm/°C were obtained by DCC via dispersant reaction, and the Q ×?f value almost improved by 25%. Without introducing impurity ions, it provides a new insight into preparing complex shaped function ceramics with high properties.  相似文献   

19.
The influences of Li2O-B2O3-SiO2 glass (LBS) on the activation energy, phase composition, the stability of the structure and microwave dielectric properties of Zn0.15Nb0.3Ti0.55O2 ceramics have been systematically investigated. LBS glass acted as flux former and contributed to the reactive liquid-phase sintering mechanism, which remarkably lowed the sintering temperature from 1150?°C to 900?°C and enhanced the shrinkage and densification of ceramic at the low sintering temperatures. The ceramics with 1.5?wt% LBS glass sintered at 900?°C for 3?h show great properties: εr = 73.59, Q × f = 8024?GHz, τf = 270.54?ppm/°C.  相似文献   

20.
A series of (ZrTi)1-x(Mg1/3Sb2/3)2xO4 (0.04?≤?x?≤?0.36) ceramics were successfully synthesized through the conventional solid-state processing. Appropriate content of CuO was added as sintering aids to promote the density of ceramics. The XRD analysis revealed that the main crystalline phase of ceramics sintered at optimal temperature belonged to α-PbO2-type structure. Raman spectroscopy and far infrared reflectivity (FIR) spectra were employed to study the phonon modes of ceramics, which explained the relationship between microwave dielectric properties and structure. It is interesting that the τf are near-zero (+6.6 ~ ?4.6?ppm/°C) and meanwhile the Q×f are relatively high (29,000–41,800?GHz) for samples with x in a very wide range of 0.10–0.36. In this range, their dielectric constants (εr) can be adjustable from 35.4 to 24.4. The results demonstrated this ceramic system is a potential candidate for microwave dielectric applications requiring an adjustable dielectric constants and near zero τf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号