首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
《Ceramics International》2022,48(14):20168-20175
To improve the electromagnetic (EM) wave absorption performance of rare earth silicate in harsh environments, this work synthesized dense SiC–Y2Si2O7 composite ceramics with excellent EM wave absorption properties by using the polymer permeation pyrolysis (PIP) process, which introduced carbon and SiC into a porous Y2Si2O7 matrix to form novel composite ceramics. SiC–Y2Si2O7 composite ceramics with different numbers of PIP cycles were tested and analysed. The results show that the as-prepared composites exhibit different microstructures, porosities, dielectric properties and EM wave absorption properties. On the whole, the SiC–Y2Si2O7 composite ceramics (with a SiC/C content of 29.88 wt%) show superior microwave absorption properties. The minimum reflection loss (RLmin) reaches ?16.1 dB when the thickness is 3.9 mm at 9.8 GHz. Moreover, the effective absorption bandwidth (EAB) included a broad frequency from 8.2 GHz to 12.4 GHz as the absorbent thickness varied from 3.15 mm to 4.6 mm. In addition, the EM wave absorption mechanism was analysed profoundly, which ascribed to the multiple mediums of nanocrystalline, amorphous phases and turbostratic carbon distributed in the Y2Si2O7 matrix. Therefore, SiC–Y2Si2O7 composite ceramics with high-efficiency EM wave absorption performance promise to be a novel wave absorbing material for applications in harsh environments.  相似文献   

2.
Doping transition metal elements in a crystal causes distortion and defects in the lattice structure, which change the electronic structure and magnetic moment, thereby adjusting the electrical conductivity and electromagnetic properties of the material. Fe-doped Sc2Si2O7 ceramics were synthesized using the sol-gel method for application to microwave absorption. The effect of Fe-doped content on the electromagnetic (EM) and microwave absorption properties was investigated in the Ku-band (12.4–18 GHz). As expected, the dielectric and magnetic properties improve substantially with increasing Fe content. Fe doping causes defects and impurity levels, which enhance polarization loss and conductance loss, respectively. Fe replaces Sc atoms in the ScO6 octahedral structure, creating a difference in spin magnetic moments, which increases the magnetic moment. Moreover, the magnetic coupling of Fe and O atoms occurs at the Fermi level, which benefits magnetic loss. In particular, when the Fe content is 6%, the fabricated Fe-doped Sc2Si2O7 ceramics show an absorption property with absorption peaks located at 14.5 GHz and a minimum reflection loss (RLmin) of ?12.8 dB. Therefore, Fe-doped Sc2Si2O7 ceramics with anti-oxidation and good microwave absorption performance have a greater potential for application in high-temperature and water-vapor environments.  相似文献   

3.
In this paper, Co2Si(Co)/SiCN composite ceramics were synthesized by simple precursor-derived ceramics method. The phase composition, morphology, and microwave absorption properties of Co2Si(Co)/SiCN composite ceramics at different pyrolysis temperatures (1000–1400°C) were studied. When pyrolysis temperature was 1300°C, carbon nanowires (CNWs), Co2Si, Si2N2O, SiC and Si3N4 were in situ generated and the best electromagnetic wave (EMW) absorption performance was obtained. The minimum reflection loss reached−50.04 dB at 4.81 mm, and the effective absorption bandwidth broadened to 3.48 GHz (14.52–18 GHz) at 1.31 mm. The excellent EMW absorption performance mainly comes from the coexistence of multiple loss mechanisms, including the magnetic loss of Co2Si, the conduction loss of CNWs, and the heterogeneous interfaces polarization between varieties of nanocrystals and amorphous ceramic matrix. By adjusting the sample thickness from 1 to 5 mm, the effective absorption of S1300 can cover the entire X and Ku bands, from 3.36 to 18 GHz. This study provides a simple way to synthesize high performance ceramic-based microwave absorbing materials.  相似文献   

4.
A low-firing SrZnV2O7 ceramic was synthesized via a traditional solid-state sintering route. The phase formation, grain morphology, and dielectric performance were studied in detail. Rietveld refinements based on XRD data revealed that SrZnV2O7 crystallized in the monoclinic space group P21/n, which was further confirmed by TEM analysis. The dense SrZnV2O7 ceramic with an εr of 11.28, a Qf of 56 660 GHz, and a τf of −27.2 ppm/°C was yielded at a low sintering temperature of 740°C for 4 h. Its chemical compatibility with Ag was verified via XRD and SEM-EDS analysis, which rendered SrZnV2O7 a prospective candidate for LTCC technology.  相似文献   

5.
Novel Tb3Sc2Al3O12 (TSAG) magneto-optical transparent ceramic was fabricated by vacuum sintering. The phase composition, microstructure, optical quality, thermal properties, and magneto-optical properties of TSAG ceramic were measured. It is shown that the increase in holding time has an effect on the grain size of TSAG ceramic. It is noted that TSAG35 ceramic presents the highest transmittance, corresponding to 81.5 % at the wavelength of 1064 nm. The thermal properties of TSAG ceramic are close to or superior to that of the reported TSAG and TGG crystals. The Verdet constant of TSAG ceramic is comparable to that of reported TSAG crystal, and 1.2 times that of TGG crystal. The results indicate that the novel TSAG ceramic is comparable to TSAG crystal in terms of magneto-optical properties and superior to TGG crystal, making it a candidate material for magneto-optical materials to be used in high-power lasers.  相似文献   

6.
For enhancing the absorption ability of dielectric and electromagnetic wave (EMW), C-rich SiC NWs /Sc2Si2O7 ceramics are successfully fabricated through in-situ growth of SiC nanowires (NWs) into porous Sc2Si2O7 ceramics by precursor infiltration and pyrolysis (PIP) at 1400?°C in Ar. SiC NWs are in-situ formed in the pore channels via a vapor-liquid-solid (VLS) mechanism, the relative complex permittivity increases notably with the content of absorber (C-rich SiC NWs), which tune the microstructure and dielectric property of C-rich SiC NWs/Sc2Si2O7 ceramics. Meanwhile, the minimum reflection coefficient (RC) of C-rich SiC NWs/Sc2Si2O7 ceramic decreases from ?9.5?dB to ??35.5?dB at 11?GHz with a thickness of 2.75?mm, and the effective absorption bandwidth (EAB) covers the whole X band (8.2–12.4?GHz) when the content of absorber is 24.5?wt%. The results indicate that Sc2Si2O7 ceramics decorated with SiC NWs and nanosized carbon have a superior microwave-absorbing ability, which can be contributed to the Debye relaxation, interfacial polarization and conductivity loss enhanced by in-situ formed SiC NWs and nanosized carbon phases. The C-rich SiC NWs /Sc2Si2O7 ceramics can be a promising microwave absorbing materials within a broad bandwidth.  相似文献   

7.
Complex pyrophosphates compounds have attracted much attention as promising candidates for substrate applications. In the work, a low-permittivity BaZnP2O7 ceramic was synthesized through solid-state reaction. The pure phase BaZnP2O7 was crystallized in the triclinic P−1 space group. Excellent microwave dielectric properties of the BaZnP2O7 ceramic with εr = 8.23, Qf = 56170 GHz, and τf = −28.7 ppm/°C were obtained at 870°C for 4 h. The substitution of Mg2+ for Zn2+ was found to have positive effects on grain morphology and dielectric properties. Optimized performance of εr = 8.21, Qf = 84760 GHz, and τf = −21.9 ppm/°C was yielded at 900°C for the BaZn0.98Mg0.02P2O7 ceramic. Intrinsic dielectric properties of BaZn1-xMgxP2O7 ceramics were studied via Clausius–Mossotti equation and complex chemical bond theory.  相似文献   

8.
SiCN-based ceramics with broadband and strong microwave absorption properties are desired for the structural and functional integration of ceramic matrix composites. The elemental composition and thermal expansion coefficients of the ceramics matrix crucially affect its microstructure and electromagnetic wave (EMW) absorption properties. BN layer with lower electrical conductivity and higher specific area, exhibits both the impedance matching characteristic and EMW attenuation in the process of multiple reflections, electrical conductivity loss, dipole polarization and interfacial polarization. Therefore, Si3N4-BN-SiCN ceramics, which were synthesized using chemical vapor infiltration (CVI) method, construct unique hetero-interface of Si3N4-BN, Si3N4–SiCN and BN-SiCN. Therefore, the Si3N4-BN-SiCN ceramics have outstanding EMW absorption performance and realize an effective absorption bandwidth (EAB) that covers the whole X band and the minimum reflection coefficient (RC) reaches -18.43 dB at a thickness of 3.37 mm.  相似文献   

9.
A Li2ZnGe3O8 ceramic was investigated as a promising microwave dielectric material for low-temperature co-fired ceramics applications. Li2ZnGe3O8 ceramic was prepared via the conventional solid-state method. X-ray diffraction data shows that Li2ZnGe3O8 ceramic crystallized into a cubic spinel structure with a space group of P4132. Dense ceramic with a relative densities of 96.3% were obtained when sintered at 945 °C for 4 h and exhibited the optimum microwave properties with a relative permittivity (εr) of 10.3, a quality factor (Q × f) of 47,400 GHz (at 13.3 GHz), and a temperature coefficient of resonance frequency (τf) of −63.9 ppm/°C. The large negative τf of Li2ZnGe3O8 ceramic could be compensated by rutile TiO2, and 0.9Li2ZnGe3O8–0.1TiO20·1TiO2 ceramic sintered at 950 °C for 4 h exhibited improved microwave dielectric properties with a near-zero τf of −1.6 ppm/°C along with εr of 11.3 and a Q × f of 35,800 GHz (11.6 GHz). Moreover, Li2ZnGe3O8 was found to be chemically compatible with silver electrode when sintered at 945 °C.  相似文献   

10.
In this study, crystal structure and microwave dielectric properties of phosphate CaMgP2O7 were comprehensively investigated. As a novel microwave dielectric ceramic, CaMgP2O7 consists of highly dense structure with optimal microwave dielectric properties (εr = 7.8 ± 0.124, Q×f = 13,165 ± 836 GHz, and τf = −85.04 ± 1.205 ppm/℃) at a low sintering temperature (950 ℃). The Rietveld refinement of XRD patterns revealed that CaMgP2O7 belongs to a triclinic system with P-1 symmetry type. Moreover, the substitution of Zn2+ for Mg2+ in CaMgP2O7 can further reduce the sintering temperature, effectively promote the densification process, and improve the Q×f value. The effects of porosity (or density) and chemical bond characteristics on the performance of CaMg1-xZnxP2O7 ceramics were carefully analyzed as well. Outstanding performance (εr = 8.05 ± 0.12, Q×f = 20,670 ± 923 GHz, and τf = −87.59 ± 3.24 ppm/℃) can be achieved for the CaMg0.84Zn0.16P2O7 ceramic sintered at 875 ℃ for 3 h.  相似文献   

11.
A novel microwave dielectric ceramic of SrGa2Si2O8 was synthesized using the traditional solid-state method. Its phase composition, microstructure, and microwave dielectric properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, and network analyzer. XRD results indicated that the space group of the ceramic transformed from I2/c to P21/a at 700 °C. A combination of good microwave dielectric properties was obtained at 1260 °C with εr = 6.3, Q×f= 96,600 GHz and τf = −45.2 ppm/°C at 16.5 GHz. The negative τf can be tuned to near zero by adding 15 mol% CaTiO3. The densification temperature can be reduced to 940 °C by adding 4 wt% LiF. Moreover, the SrGa2Si2O8 ceramic had good chemical compatibility with the Ag electrode. A patch antenna was designed using the 0.85SrGa2Si2O8 + 0.15CaTiO3 + 4 wt% LiF ceramic. The antenna had a high radiation efficiency of 99.2 % and a gain of 2.988 dBi at the center frequency of 4.261 GHz. All results indicated that the SrGa2Si2O8 ceramic has promising potential for applications in 5 G wireless communication technology.  相似文献   

12.
Environmental barrier coatings (EBCs) applied to gas-turbine components require excellent corrosion resistance to molten siliceous debris such as sand or volcanic ash in high-temperature environments while maintaining mechanical integrity. To date, most research has focused on single-phase rare-earth (RE) disilicates as candidate EBC materials, but here we report the superior corrosion resistance of a dual-phase disilicate composite, namely Gd2Si2O7/Sc2Si2O7 (70/30 vol%). EBSD measurements of cross-sections of the EBC after exposure to a calcium magnesium alumino-silicate (CMAS) for 0.5, 2, 12, and 48 h at 1400 °C reveal that, unlike in single-phase systems, the CMAS reaction layer consists of two distinct sublayers. The inner sublayer consists of a mixture of Ca2Gd8(SiO4)6O2 and Sc2Si2O7 crystals in a Ca-depleted glassy matrix, whereas the thinner outer region contains larger, elongated Ca2Gd8(SiO4)6O2 crystals oriented perpendicular to the composite surface and devoid of any Sc2Si2O7 crystals. The total thickness of the reaction layer is found to be about 20% less compared to that of single-phase Gd2Si2O7 under the same conditions, indicating that dual-phase RE-disilicate composites are a promising materials system for increasing the lifetime performance of EBCs.  相似文献   

13.
Silicon carbide nanowires (SiC NWs) reinforced SiOC ceramics were fabricated through in situ growth of SiC NWs in SiOC ceramics by pyrolysis of polysiloxane. SiC NWs were in situ formed by the addition of ferrocene, the content of SiC NWs increased with the increases of annealing temperature and ferrocene content. Due to the formation of SiC NWs in the inter-particle pores of SiOC ceramics, the SiOC particles were bridged by SiC NWs, which led to the increase of electrical conductivity. With the increase of SiC NWs content, the real permittivity and the imaginary permittivity increased from 3.63 and 0.14 to 10.72 and 12.17, respectively, and the minimum reflection coefficient decreased from −1.22 dB to −20.01 dB, demonstrating the SiOC ceramics with SiC NWs had a superior microwave-absorbing ability.  相似文献   

14.
A novel negative temperature coefficient material based on lanthanum zirconate ceramics was proposed for high-temperature applications. This material was synthesized through a solid-state reaction by sintering at 1923 K for 10 h in air. The X-ray diffraction and scanning electron microscopy results confirmed that La2Zr2O7 ceramics exhibited a pyrochlore phase with a relative density of 98.2 %. The resistance–temperature characteristics of the material revealed that La2Zr2O7 ceramics exhibited an NTC feature within the broad temperature range of 973–1773 K in addition to maintaining high thermal constant B, and resistivity to ensure good sensitivity at high temperatures. These properties, along with high ceiling temperature, unique oxygen insensitivity, and excellent ageing coefficient of <0.7 % at 1773 K, render La2Zr2O7 ceramics a promising candidate as thermistor materials with high-temperature NTC.  相似文献   

15.
For enhanced mechanical and microwave absorption properties at the same time, the SiCf/hybrid matrix composites were fabricated by precursor infiltration and pyrolysis (PIP) method with polysiloxane (PSO) ethanol solution, alumina sols and silica sols. As the first layer of the hybrid matrix, the SiOC ceramic was pyrolyzed from PSO solution. The remained hybrid matrix was mullite, which sintered from alumina sols and silica sols. The effects of different content of PSO solution on the morphologies, flexure strength and reflection loss values of composites were studied. Additionally, the XRD patterns, Fourier Transform Infrared (FTIR) and Raman spectrum of hybrid matrix were also investigated. With the increasingly content of PSO solution from 0% to 10 % and 20%–60% in the first infiltration-pyrolysis process, the flexure strength of composites was increased from 175.18 MPa to 301.94 MPa and decreased from 263.33 MPa to 221.30 MPa, respectively. The complex permittivity was increased with the increasing content of PSO solution from 0%–40% due to the free carbon conductive network from excessive SiOC. Moreover, the complex permittivity of SiCf/hybrid matrix composites with 50 % and 60 % content of PSO solution was reduced due to more open porosity and broken free carbon conductive network. Additionally, the maximum reflection loss values of SiCf/hybrid matrix composite with 50 % PSO solution were over -60 dB and the effective absorption bandwidth (EAB) of this composite reaches 3.89 GHz in the X band.  相似文献   

16.
《Ceramics International》2017,43(10):7522-7530
Low-loss novel Li4Mg3Ti2O9 dielectric ceramics with rock-salt structure were prepared by a conventional solid-state route. The crystalline structure, chemical bond properties, infrared spectroscopy and microwave dielectric properties of the abovementioned system were initially investigated. It could be concluded from this work that the extrinsic factors such as sintering temperatures and grain sizes significantly affected the dielectric properties of Li4Mg3Ti2O9 at lower sintering temperatures, while the intrinsic factors like bond ionicity and lattice energy played a dominant role when the ceramics were densified at 1450 °C. In order to explore the origin of intrinsic characteristics, complex dielectric constants (ε and ε’’) were calculated by the infrared spectra, which indicated that the absorptions of phonon oscillation predominantly effected the polarization of the ceramics. The Li4Mg3Ti2O9 ceramics sintered at 1450 °C exhibited excellent properties of εr=15.97, Q·f=135,800 GHz and τf=−7.06 ppm/°C. In addition, certain amounts of lithium fluoride (LiF) were added to lower the sintering temperatures of matrix. The Li4Mg3Ti2O9−3 wt% LiF ceramics sintered at 900 °C possessed suitable dielectric properties of εr=15.17, Q·f =42,800 GHz and τf=−11.30 ppm/°C, which made such materials promising for low temperature co-fired ceramic applications (LTCC).  相似文献   

17.
The dielectric properties of a Ga-based melilite type ceramic Sr2Ga2SiO7 via theoretical prediction based on far-infrared spectroscopy and experimental measurement by the Hakki–Coleman method were studied in this work. Dense and single-phase ceramics were fabricated via solid-state reaction at 1330°C and exhibited comprehensive microwave dielectric properties (εr ∼ 7.6, Q × f ∼ 23 600 GHz, and τf ∼ −35.2 ppm/°C) at 14.3 GHz. Chemical modifications were proposed to adjust the thermal stability and reduce the densification temperature. By adding 10 mol% CaTiO3, the negative τf can be compensated to a near-zero value of −3.8 ppm/°C. The densification temperature was reduced to 940°C by adding 3 wt.% LiF. A patch antenna was designed using Sr2Ga2SiO7 ceramic with a high radiation efficiency of 99.1% and a gain of 2.788 dBi at the center frequency of 4.371 GHz. All results indicate that the Sr2Ga2SiO7 ceramic has promising application potential for 5G wireless communication technology.  相似文献   

18.
High-density Si3N4-SiC ceramic nanocomposites have exceptional mechanical properties, but little is known about their electromagnetic wave absorption (EMA) capabilities. In this paper, the effects of sintering temperature and starting material compositions on the dielectric and EMA properties of hot-pressed Si3N4-SiC ceramic nanocomposites were investigated. The real and imaginary permittivities of Si3N4-SiC ceramic nanocomposites increase with increasing sintering temperature or SiC content, particularly at the sintering temperature of 1850°C and SiC content of 50 wt.%. This is primarily due to the improvement of interfacial and defect polarizations, which is caused by the doping of nitrogen into the SiC nanocrystals during the solution-precipitation process. The real and imaginary permittivities of Si3N4-SiC ceramic nanocomposites show decreasing trends as sintering aid content increases. Si3N4-SiC ceramic composites have both good EMA and mechanical properties when they are sintered at 1850°C with 30 wt.% SiC and 5–8 wt.% sintering aids. The minimum reflection loss and maximum flexural strength reach -58 dB and 586 MPa, respectively. Materials with multilayered structural designs have both strong and broad EMA properties.  相似文献   

19.
In this study, transparent LaErZr2O7 ceramic with high excess La and Er contents (nominally La1.28Er1.28Zr2O7.84) was successfully prepared by vacuum sintering at 1850?°C for 6?h using nanosized powder. The XRD, SEM, EDX and TEM results reveal that the single pyrochlore phase in the powder sample transforms to the coexistence of La-rich pyrochlore phase and Er-rich defect fluorite phase after high temperature sintering. The high excess amounts of La and Er favor the formation of pyrochlore structure. Despite the coexistence of two phases, the sample with 1?mm thickness shows excellent in-line transmittance in the visible to mid-infrared region (as high as 81% at 1100?nm). The upconversion and infrared emission under 980?nm exciting were measured and discussed as well.  相似文献   

20.
《Ceramics International》2017,43(14):11367-11375
A ternary functional composite NiFe2O4@MnO2@graphene was synthesized successfully via a facile method. The phase constitution, microstructures, morphologies and chemical compositions of the samples were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) and X-ray photoelectron spectroscopy (XPS). It was observed that the NiFe2O4 nanoparticles were coated by hierarchically MnO2 shells and distributed on the surface of graphene. Investigations of EM wave absorption indicated that NiFe2O4@MnO2@ graphene composite has the strongest reflection loss of −47.4 dB at 7.4 GHz at the matching thickness of 3 mm, compared to NiFe2O4 and NiFe2O4@MnO2, and its maximum absorption bandwidth (<−10 dB) is 4.3 GHz (from 5.1 to 9.4 GHz). The enhanced microwave absorption performance can be attributed to the hierarchical structure of MnO2, void space between MnO2 and graphene, and better impedance matching of ternary composite. The above results indicate that the novel hierarchical NiFe2O4@MnO2@graphene composite, with intense absorption and wide absorption bandwidth, would be a promising absorber with less EM wave interference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号