首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of carbon fibre content on the mechanical behaviour of HfC/SiC composites was investigated up to 2100 °C for specimens containing 40 or 55 vol% fibres. Silicon carbide was added as a sintering aid during hot pressing. Increasing the fibre content made infiltration more difficult, which resulted in higher porosity in the specimen with 55 vol% fibres. The room temperature flexural strength ranged from 340 to 380 MPa, and it increased to more than 400 MPa at 1800 °C due to stress relaxation. Increasing temperature was accompanied by a decrease in the slope of the load-displacement curve, indicating a decrease in elastic modulus, but plastic deformation was not observed below 2100 °C. At 2100 °C, the specimen containing a higher fibre content underwent significant deformation due to low interfacial strength between the fibre plies, retaining a strength at the proportional limit of 290 MPa and an ultimate strength of 520 MPa.  相似文献   

2.
《Ceramics International》2020,46(5):6254-6261
A ZrB2–SiC–TaSi2–Si coating on siliconized graphite substrate was prepared by a combination process of slurry brushing and vapor silicon infiltration. The high-temperature oxidation behavior and cracking/spallation resistance of the as-prepared coating were investigated in detail. It was revealed that the oxidation kinetics at 1500 °C in static air followed a parabolic law with a relatively low oxidation rate constant down to 0.27 mg/(cm2·h0.5). The crack area ratio of the as-prepared coating was determined as 3.8 × 10−3 after severe thermal cycling from 1500 °C to room temperature for 20 times. Apart from the formation of ZrO2 as skeleton phase with SiO2 as infilling species, the good oxidation and cracking/spallation resistance of the coating also could be attributed to its unique duplex-layered structure, i.e., a dense ZrB2–SiC–TaSi2 major layer filled with Si and an outermost Si cladding top layer. Meanwhile, the strong adhesion strength of the SiC transition layer with the graphite substrate and the outer ZrB2–SiC–TaSi2–Si layer was a vital factor as well.  相似文献   

3.
Dense ZrB2 containing 15 vol.% SiC and 15 vol.% graphite was exposed to flowing air at 1500 °C. A layered scale structure developed that consisted of (1) a uniform SiO2-rich layer on the surface, (2) a layer of ZrO2 and SiO2, (3) a layer of ZrO2 (4) a partially oxidized layer composed of porous ZrB2, ZrO2, and graphite, and (5) unaffected ZrB2–SiC–C. A thermodynamic model based on volatility diagrams and consistent with the experimental observations was constructed to explain the development of the layered structure. Oxidation behavior was consistent with passive oxidation and formation of a protective surface layer. Analysis indicated that it may not be possible to form a protective surface layer without actively oxidizing SiC and producing a porous partially oxidized layer between the outer protective layer and the underlying unoxidized material.  相似文献   

4.
The microstructure and elevated temperature mechanical properties of continuous carbon fibre reinforced ZrC and TaC composites were investigated. Silicon carbide was added to both compositions to aid sintering during hot pressing. Fibres were homogeneously distributed and no fibre degradation was observed at the interface with the ceramic matrix even after testing at 2100 °C. The flexural strength increased from 260 to 300 MPa at room temperature to ∼450 MPa at 1500 °C, which was attributed to stress relaxation. At 1800 °C, the strength decreased to ∼410 MPa for both samples. At 2100 °C plastic deformation resulted in lower strength at the proportional limit (210–320 MPa), but relatively high ultimate strength (370–440 MPa). The sample containing ZrC had a lower ultimate strength, but higher failure strain at 2100 °C due to the weak fibre/matrix interface that resulted in fibre-dominated composite behaviour.  相似文献   

5.
The microstructure evolution of ZrB2 hot pressed with 15 vol% TaSi2 was studied in the as-sintered state and after oxidation for 15 min at 1500 and 1650 °C in stagnant air. In the pristine material, the original ZrB2 nuclei are surrounded by a mixed (Zr,Ta)B2 solid solution. Refractory Ta-compounds are located at triple junctions and wetted grain boundaries are distinctive of this ceramic. After oxidation, the solid solution evolves into ZrO2 grains encasing intragranular nano-structured TaB2 particles. Here we show that the operating limit temperature of this composite is related to the critical oxidation of TaB2 to Ta2O5 above 1600 °C, accompanied by large volume expansion and local liquid formation, which ruptures the ZrO2 grains and structure.  相似文献   

6.
High temperature oxidation of ZrB2 and the effect of SiC on controlling the oxidation of ZrB2 in ZrB2–SiC composites were studied in situ, in air, using X-ray diffraction. Oxidation was studied by quantitatively analyzing the crystalline phase changes in the samples, both non-isothermally, as a function of temperature, up to ~1650 °C, as well as isothermally, as a function of time, at ~1300 °C. During the non-isothermal studies, the formation and transformation of intermediate crystalline phases of ZrO2 were also observed. The change in SiC content, during isothermal oxidation studies of ZrB2–SiC composites, was similar in the examined temperature range, regardless of sample microstructure and composition. Higher SiC content, however, markedly retarded the oxidation rate of the ZrB2 phase in the composites. A novel approach to quantify the extent of oxidation by estimating the thickness of the oxidation layer formed during oxidation of ZrB2 and ZrB2–SiC composites, based on fractional conversion of ZrB2 to ZrO2 in situ, is presented.  相似文献   

7.
Although Cf/ZrB2–SiC composites prepared via direct ink writing combined with low-temperature hot-pressing were shown to exhibit high relative density, high preparation efficiency, and excellent flexural strength and fracture toughness in our previous work, their oxidation and ablation resistance at high and ultrahigh temperatures had not been investigated. In this work, the oxidation and ablation resistance of Cf/ZrB2–SiC composites were evaluated via static oxidation at high temperature (1500°C) and oxyacetylene ablation at ultrahigh temperatures (2080 and 2270°C), respectively. The thickness of the oxide layer of the Cf/ZrB2–SiC composites is <40 μm after oxidizing at 1500°C for 1 h. The Cf/ZrB2–SiC composites exhibit non-ablative properties after oxyacetylene ablation at 2080 and 2270°C for >600 s, with mass ablation rates of 3.77 × 10−3 and 5.53 × 10−3 mg/(cm2 s), and linear ablation rates of −4.5 × 10−4 and −5.8 × 10−4 mm/s, respectively. Upon an increase in the ablation temperature from 2080 to 2270°C, the thickness of the total oxide layer increases from 360 to 570 μm, and the carbon fibers remain intact in the unaffected region. Moreover, the oxidation and ablation process of Cf/ZrB2–SiC at various temperatures was analyzed and discussed.  相似文献   

8.
In order to improve the oxidation resistance of C/C composites, a ZrB2–SiC/SiC oxidation protective dual-layer coating was prepared by a pack cementation combined with the slurry paste method. The phase and microstructure of the coating were characterised by X-ray diffraction, scanning electron microscope and energy-dispersive spectrometer analyses. The anti-oxidation and thermal shock resistance of the coating were also investigated. It was found that the ZrB2–SiC/SiC coating could effectively improve the oxidation resistance of the C/C composites. The weight loss of the coated samples was only 1.8% after oxidation at 1773?K for 18?h in air. The coating endured 20 thermal shock cycles between 1773?K and room temperature with only 4.6% weight loss.  相似文献   

9.
Creep properties of 2D woven CVI and PIP SiC/SiC composites with Sylramic™-iBN SiC fibers were measured at temperatures to 1650 °C in air and the data was compared with the literature. Batch-to-batch variations in the tensile and creep properties, and thermal treatment effects on creep, creep parameters, damage mechanisms, and failure modes for these composites were studied. Under the test conditions, the CVI SiC/SiC composites exhibited both matrix and fiber-dominated creep depending on stress, whereas the PIP SiC/SiC composites displayed only fiber-dominated creep. Creep durability in both composite systems is controlled by the most creep resistant phase as well as oxidation of the fibers via cracking matrix. Specimen-to- specimen variations in porosity and stress raisers caused significant differences in creep behavior and durability. The Larson-Miller parameter and Monkman-Grant relationship were used wherever applicable for analyzing and predicting creep durability.  相似文献   

10.
The influence of YB4 and Y2O3 on densification, mechanical properties and oxidation performance of ZrB2-SiC (ZS) composite was studied. The oxidation tests were performed in static air up to temperature of 1650 °C for 1 h as well as under dynamic conditions of oxyacetylene torch at 2000 °C. Static oxidation of ZS led to the formation of protective silica-based glass on the surface. However, ablation tests showed absence of silica in ablation centre. Only dense zirconia layer was left on the top of ZS. Composites with Y-containing additives exhibited significantly inferior oxidation performance in static conditions, since severe spallation and deeper degradation of the material were observed. On the contrary, the depth of material degradation after ablation was comparable with ZS. Samples were covered by solid solution of zirconia and yttria. Due to very low vapor pressure, yttria-based oxidation products are of interest considering even higher application temperatures exceeding 2000 °C.  相似文献   

11.
《Ceramics International》2020,46(11):19209-19216
The impact of SiAlON on densification behavior and microstructure of the ZrB2-SiC composite was investigated. ZrB2, SiC, and SiAlON were used as the initial materials to produce ZrB2-SiC composite by hot pressing at 1900 °C. A fully dense composite was obtained having ~99.9% relative density. High-resolution X-ray diffraction (HRXRD) assessment verified the in-situ formation of ZrC, and the presence of residual carbon, SiAlON, and ZrB2 and SiC phases in the as-sintered ceramic. Furthermore, the thermodynamic calculations confirmed the results attained by HRXRD. In addition, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were utilized for the microstructural investigation. SEM fractographs indicated the impact of SiAlON on the hindering of grain growth and the formation of flaky phases (graphitized carbon or solidified liquid phase) at the grain boundaries. TEM studies revealed the presence of a transparent glassy phase at the particle interfaces. A significant impact of liquid phase sintering was also affirmed in the clean interfaces.  相似文献   

12.
The kinetics and oxide scale evolution during isothermal exposure of spark-plasma sintered ZrB2-20 SiC–LaB6 (7, 10 or 14 vol%) composites at 1300 °C for 1, 8, or 24 h have been examined. Random mass change observed during the first hour stems from a non-protective scale. The variation of mass gain with time is expressed by near-parabolic rate law during 0−8 h time period, and by relations indicating slower kinetics during 8−24 h, with parabolic rate constants (kp) decreasing sharply. Microstructural examination has shown a continuously evolving layered oxide scale comprising La2Si2O7, borosilicate glass (BSG), ZrSiO4, and ZrO2, where the BSG layer growth rate scales linearly with LaB6 content during 0−8 h, but shows an opposite trend on further exposure. During both time periods (0−8 and 8−24 h), kp decreased following a linear relationship with increasing BSG layer thickness, indicating its key role as diffusion barrier for oxygen.  相似文献   

13.
In this study, near-fully dense ZrB2–SiC–VC (75-20-5 vol%) composite was manufactured through hot pressing at 1850°C under the pressure of 40 MPa for 60 min. Then the oxidation examination of the composite was carried out under different durations and temperatures. The microstructure and phase evolution after hot pressing and oxidation processes were examined by scanning electron microscopy, and X-ray diffractometry. The VC addition led to the formation of ZrC and VSi2 phases, which assisted the densification of the composite by removing ZrO2 from the particles’ surface. The oxides of ZrO2, SiO2, ZrSiO4, V2O5, and VO2 formed distinct layers on the sample during the oxidation at 1700°C for 4 h with a parabolic regimen and activation energy of 177.5 kJ/mol.  相似文献   

14.
《Ceramics International》2015,41(6):7677-7686
Ablation behavior of ZrB2–SiC protective coating for carbon/carbon composites during oxyacetylene flame test at 2500 °C was investigated by analyzing the microstructure differentiation caused by the increasing intensity of ablation from the border to the center of the surface. After ablation, a continuous SiO2 scale, a porous SiO2 layer inlaid with fine ZrO2 nuclei, and a continuous ZrO2 scale respectively emerged in the border region, the transitional region, and the center region. In order to investigate the ablation microstructure in the initial stage, the sub-layer microstructure was characterized and found to be mainly formed by coral-like structures of ZrO2, which showed huge difference with the continuous structure of ZrO2 on the surface layer. A kinetic model concerning the thickness change induced by volatilization and oxidation during ablation was built to explain the different growth mechanisms of the continuous ZrO2 scale and the coral-like ZrO2 structure.  相似文献   

15.
Carbon fiber reinforced silicon carbide (C/SiC) composites are of the few most promising materials for ultra-high-temperature structural applications. However, the existing studies are mainly conducted at room and moderate temperatures. In this work, the tensile properties of a two-dimensional plain-weave C/SiC composite are studied up to 2300 °C in inert atmosphere for the first time. The study shows that C/SiC composite firstly shows linear deformation behavior and then strong nonlinear characteristics at room temperature. The nonlinear deformation behavior rapidly reduces with temperature. The Young’s modulus increases up to 1000 °C and then decreases as temperature increases. The tensile strength increases up to 1000 °C firstly, followed by reduction to 1400 °C, then increases again to 1800 °C, and lastly decreases with increasing temperature. The failure mechanisms being responsible for the mechanical behavior are gained through macro and micro analysis. The results are useful for the applications of C/SiC composites in the thermal structure engineering.  相似文献   

16.
The isothermal oxidation behavior of YAl3C3 in air has been investigated at 900−1300 °C for 20 h. At 900 and 1000 °C, the oxidation kinetic curves of YAl3C3 obey parabolic rate law. The oxide scales have a bilayer structure. The outer layer is composed of YAG and amorphous Al2O3, and the inner layer is a carbon-rich layer. The oxidation kinetic curves of YAl3C3 obey linear law above 1100 °C. The oxide scales have a monolayer structure composed of Al2O3 and YAG. The crystallization transformation of amorphous Al2O3 causes the oxidation kinetic curve changing from a parabolic to a straight line.  相似文献   

17.
In order to improve the oxidation protective ability of SiC-coated carbon/carbon (C/C) composites, a SiC–Si–ZrB2 multiphase ceramic coating was prepared on the surface of SiC-coated C/C composite by the process of pack cementation. The microstructures of the coating were characterized using X-ray diffraction and scanning electron microscopy. The coating was found to be composed of SiC, Si and ZrB2. The oxidation resistance of the coated specimens was investigated at 1773 K. The results show that the SiC–Si–ZrB2 can protect C/C against oxidation at 1773 K for more than 386 h. The excellent oxidation protective performance is attributed to the integrity and stability of SiO2 glass improved by the formation of ZrSiO4 phase during oxidation. The coated specimens were given thermal shocks between 1773 K and room temperature for 20 times. After thermal shocks, the residual flexural strength of the coated C/C composites was decreased by 16.3%.  相似文献   

18.
We have used TEM to study the microstructure of friction surface of carbon fibre/carbon–silicon carbide composites brake discs after multi braking stop by using organic pads. A friction surface layer was developed consistently on the top of Si regions of the composites, but inconsistently on that of SiC and C. Inside the layer, amorphous silicon/silicon oxides appeared extensively with various non-metallic and metallic crystallites dispersed inside with sizes ranging from a few nanometers to several microns. A coherent interface between the friction layer and the composite surface was established under the braking conditions, whilst its sustainability varied notably in SiC and C regions. Microcracking near the friction surface appeared in SiC and Cf/C regions largely due to the extensive ductile deformation of SiC and weak interfaces between C and Cf. Material joining mechanisms were discussed to enlighten the friction transfer layer development on the surface of the composite discs.  相似文献   

19.
《Ceramics International》2017,43(13):9934-9940
Continuous silicon carbide fiber–reinforced silicon carbide matrix (SiCf/SiC) composites have developed into a promising candidate for structural materials for high–temperature applications in aerospace engine systems. This is due to their advantageous properties, such as low density, high hardness and strength, and excellent high temperature and oxidation resistance. In this study, SiCf/SiC composites were fabricated via polymer infiltration and pyrolysis (PIP) with the lower–oxygen–content KD–II SiC fiber as the reinforcement; a mixture of 2,4,6,8–tetravinyl–2,4,6,8–tetramethylcyclotetrasiloxane (V4) and liquid polycarbosilane (LPCS), known as LPVCS, was used as the precursor; while pyrolytic carbon (PyC) was used as the interface. The effects of oxidation treatment at different temperatures on morphology, structure, composition, and mechanical properties of the KD–II SiC fibers, SiC matrix from LPVCS precursor conversion, and SiCf/SiC composites were comprehensively investigated. The results revealed that the oxidation treatment greatly impacted the mechanical properties of the SiC fiber, thereby significantly influencing the mechanical properties of the SiCf/SiC composite. After oxidation at 1300 °C for 1 h, the strength retention rates of the fiber and composite were 41% and 49%, respectively. In terms of the phase structure, oxidation treatment had little effect on the SiC fiber, while greatly influencing the SiC matrix. A weak peak corresponding to silica (SiO2) appeared after high–temperature treatment of the fiber; however, oxidation treatment of the matrix led to the appearance of a very strong diffraction peak that corresponds to SiO2. The analysis of the morphology and composition indicated cracking of the fiber surface after oxidation treatment, which was increasingly obvious with the increase in the oxidation treatment temperature. The elemental composition of the fiber surface changed significantly, with drastically decreased carbon element content and sharply increased oxygen element content.  相似文献   

20.
The present study elucidates the effect of oxidation during static and fatigue loading in SiC/SiC CMC structured component, which shows damage in the stress-concentrated region. It is made of Tyranno SA3 fiber, BN (Boron nitride) interphase, and CVI (chemical vapor infiltration) + PIP (polymer impregnation and pyrolysis) hybrid matrix. The comparison based on strength and fracture morphology was made. After annealing, the as-received sample showed minute oxidation and slightly enhanced strength. The fatigued sample without annealing under low stress showed higher retained strength than the as-received sample due to smooth debonding. The fatigued sample with annealing under high stress showed a loss in strength than the as-received sample owing to the formation of a significant amount of borosilicates glasses, which further promoted SiO2 formation between fiber and matrix and caused the brittle failure. However, simultaneous filling borosilicate glasses into the pores oppositely aided in maintaining the retained strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号