首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, MoSi2, MoSi2-20?vol% (ZrB2-20?vol% SiC) and MoSi2-40?vol% (ZrB2-20?vol% SiC) ceramics were prepared using pressureless sintering. The oxidation behaviors of these MoSi2-(ZrB2-SiC) ceramics were investigated at 1600?°C for different soaking time of 60, 180 and 300?min, respectively. The oxidation behaviors of the MoSi2-(ZrB2-SiC) ceramics were studied through weight change test, oxide layer thickness measurement, and microstructure analysis. Further investigation of the oxidation behaviors of the MoSi2-(ZrB2-SiC) ceramics was conducted at a higher temperature of 1800?°C for 10?min. The microstructure evolution of the ceramics was also analyzed. It was finally found that the oxidation resistance of MoSi2 was improved by adding ZrB2-SiC additives, and the MoSi2-20?vol% (ZrB2-20?vol% SiC) ceramic exhibited the optimal oxidation resistance behavior at elevated temperatures. From this study, it is believe that it can give some fundamental understanding and promote the engineering application of MoSi2-based ceramics at high temperatures.  相似文献   

2.
The thermal conductivity, thermal expansion, Youngs Modulus, flexural strength, and brittle–plastic deformation transition temperature were determined for HfB2, HfC0·98, HfC0·67, and HfN0·92 ceramics. The oxidation resistance of ceramics in the ZrB2–ZrC–SiC system was characterized as a function of composition and processing technique. The thermal conductivity of HfB2 exceeded that of the other materials by a factor of 5 at room temperature and by a factor of 2·5 at 820°C. The transition temperature of HfC exhibited a strong stoichiometry dependence, decreasing from 2200°C for HfC0·98 to 1100°C for HfC0·67 ceramics. The transition temperature of HfB2 was 1100°C. The ZrB2/ZrC/SiC ceramics were prepared from mixtures of Zr (or ZrC), SiB4, and C using displacement reactions. The ceramics with ZrB2 as a predominant phase had high oxidation resistance up to 1500°C compared to pure ZrB2 and ZrC ceramics. The ceramics with ZrB2/SiC molar ratio of 2 (25 vol% SiC), containing little or no ZrC, were the most oxidation resistant.  相似文献   

3.
《Ceramics International》2022,48(6):8097-8103
ZrB2/SiC, ZrB2/SiC/Si3N4 and ZrB2/SiC/WC ceramic tool materials were prepared by spark plasma sintering technology, and their oxidation resistance was tested at different oxidation temperatures. When the oxidation temperature is 1300 °C, the oxide layer thickness, oxidation weight gain and flexural strength of ZrB2/SiC/Si3N4 ceramic tool material after oxidation are 8.476 μm, 1.436 mg cm?2 and 891.0 MPa, respectively. Compared with ZrB2/SiC ceramic tool materials, the oxide layer thickness and oxidation weight gain are reduced by 8.2% and 11.8%, respectively, and the flexural strength after oxidation is increased by 116.1%. However, the addition of WC significantly reduces the oxidation resistance of the ceramic tool material. A dense oxide film is formed on the surface of ZrB2/SiC/Si3N4 ceramic tool material during oxidation, which effectively prevents oxygen from entering the inside of the material, thereby improving the oxidation resistance of the ceramic tool material.  相似文献   

4.
SiC/20?wt% ZrB2 composite ceramics were fabricated via pressureless solid phase sintering in argon atmosphere at different temperature. The effect of sintering temperature on microstructure, electrical properties and mechanical properties of SiC/ZrB2 ceramics was investigated. Electrical resistivity exhibits twice significant decreases with increasing sintering temperature. The first decrease from 1900?°C to 2000?°C is attributed to the obvious decrease of continuous pore channels in as-sintered materials. The second decrease from 2100?°C to 2200?°C results from the improvement of carbon crystallization and the disappearance of amorphous layers enveloping ZrB2 grains. Additionally, the increase of sintered density with increasing temperature caused greatly advance of flexural strength, elastic modulus and Vickers hardness. But excessive temperature is detrimental to flexural strength because of SiC grain growth.  相似文献   

5.
Carbon–carbon (C–C) composites are ideal for use as aerospace vehicle structural materials; however, they lack high‐temperature oxidation resistance requiring environmental barrier coatings for application. Ultra high‐temperature ceramics (UHTCs) form oxides that inhibit oxygen diffusion at high temperature are candidate thermal protection system materials at temperatures >1600°C. Oxidation protection for C–C composites can be achieved by duplicating the self‐generating oxide chemistry of bulk UHTCs formed by a “composite effect” upon oxidation of ZrB2–SiC composite fillers. Dynamic Nonequilibrium Thermogravimetric Analysis (DNE‐TGA) is used to evaluate oxidation in situ mass changes, isothermally at 1600°C. Pure SiC‐based fillers are ineffective at protecting C–C from oxidation, whereas ZrB2–SiC filled C–C composites retain up to 90% initial mass. B2O3 in SiO2 scale reduces initial viscosity of self‐generating coating, allowing oxide layer to spread across C–C surface, forming a protective oxide layer. Formation of a ZrO2–SiO2 glass‐ceramic coating on C–C composite is believed to be responsible for enhanced oxidation protection. The glass‐ceramic coating compares to bulk monolithic ZrB2–SiC ceramic oxide scale formed during DNE‐TGA where a comparable glass‐ceramic chemistry and surface layer forms, limiting oxygen diffusion.  相似文献   

6.
《Ceramics International》2020,46(5):6254-6261
A ZrB2–SiC–TaSi2–Si coating on siliconized graphite substrate was prepared by a combination process of slurry brushing and vapor silicon infiltration. The high-temperature oxidation behavior and cracking/spallation resistance of the as-prepared coating were investigated in detail. It was revealed that the oxidation kinetics at 1500 °C in static air followed a parabolic law with a relatively low oxidation rate constant down to 0.27 mg/(cm2·h0.5). The crack area ratio of the as-prepared coating was determined as 3.8 × 10−3 after severe thermal cycling from 1500 °C to room temperature for 20 times. Apart from the formation of ZrO2 as skeleton phase with SiO2 as infilling species, the good oxidation and cracking/spallation resistance of the coating also could be attributed to its unique duplex-layered structure, i.e., a dense ZrB2–SiC–TaSi2 major layer filled with Si and an outermost Si cladding top layer. Meanwhile, the strong adhesion strength of the SiC transition layer with the graphite substrate and the outer ZrB2–SiC–TaSi2–Si layer was a vital factor as well.  相似文献   

7.
Herein, we prepare phase-pure ZrB2-SiC composite powders by molten-salt-mediated reduction of ZrSiO4/B2O3/activated carbon mixtures with Mg, showing that the phase composition and morphology of the above composites is influenced by firing temperature, B:Zr and C:Si molar ratios, and the amount of excess Mg. Notably, phase-pure ZrB2-SiC powder with a ZrB2:SiC weight ratio of ~75:25 could be obtained by 3-h firing at 1200?°C, i.e., at a temperature lower than that used for conventional carbothermal reduction by at least 200?°C. As-prepared ZrB2-SiC composites exhibited grain sizes of several microns and comprised SiC nanoparticles well distributed in the ZrB2 matrix. Finally, the oxidation activation energies of the prepared ZrB2 and ZrB2-SiC powders were determined as 326 and 381?kJ/mol, respectively, which demonstrated that the introduction of SiC improved the oxidation resistance of monolithic ZrB2.  相似文献   

8.
A volatility diagram of zirconium carbide (ZrC) at 1600, 1930, and 2200°C was calculated in this work. Combining it with the existing volatility diagrams of ZrB2 and SiC, the volatility diagram of a ternary ZrB2‐SiC‐ZrC (ZSZ) system was constructed in order to interpret the oxidation behavior of ZSZ ceramics. Applying this diagram, the formation of ZrC‐corroded and SiC‐depleted layers and the oxidation sequence of each component in ZSZ during oxidation and ablation could be well understood. Most of the predictions from the diagrams are consistent with the experimental observations on the oxidation scale of dense ZrB2‐SiC‐ZrC ceramics/coatings after oxidation at 1600°C or ablation at 1930 and 2200°C. The reasons for the discrepancy are also briefly discussed.  相似文献   

9.
Microstructures were investigated for ZrB2–SiC and ZrB2–HfB2–SiC ultra high temperature ceramics that were subjected to a high temperature plasma environment. Both materials were tested in the MESOX facility to determine the recombination coefficient for atomic oxygen up to 1750 °C in subsonic air plasma flow. Surfaces were analyzed before and after testing to gain a deeper insight of the surface catalytic properties of these materials. Microstructural analyses highlighted oxidation induced surface modification. Oxide layers were composed of silica with trace amounts of boron oxide and zirconia if the maximum temperature was lower than about 1550 °C and zirconia for higher temperatures. The differences in the oxide layer composition may account for the different catalytic behavior. In particular, the presence of a borosilicate glass layer on the surface of ZrB2–SiC materials guarantees atomic oxygen recombination coefficients that are relatively lower than the coefficients measured when only zirconia is present. The oxidation processes of ZrB2–HfB2–SiC materials, associated with catalytic tests carried out up to 1550 °C, lead to the formation of hafnia as well as silica, and zirconia. The higher recombination coefficients measured in the case of ZrB2–HfB2–SiC materials can be correlated with the presence of hafnia which is probably characterized by higher catalytic activity compared to zirconia. In any case, the investigated materials demonstrate a low catalytic activity over the inspected temperature range with maximum values of recombination coefficients close to 0.1.  相似文献   

10.
High temperature oxidation of ZrB2 and the effect of SiC on controlling the oxidation of ZrB2 in ZrB2–SiC composites were studied in situ, in air, using X-ray diffraction. Oxidation was studied by quantitatively analyzing the crystalline phase changes in the samples, both non-isothermally, as a function of temperature, up to ~1650 °C, as well as isothermally, as a function of time, at ~1300 °C. During the non-isothermal studies, the formation and transformation of intermediate crystalline phases of ZrO2 were also observed. The change in SiC content, during isothermal oxidation studies of ZrB2–SiC composites, was similar in the examined temperature range, regardless of sample microstructure and composition. Higher SiC content, however, markedly retarded the oxidation rate of the ZrB2 phase in the composites. A novel approach to quantify the extent of oxidation by estimating the thickness of the oxidation layer formed during oxidation of ZrB2 and ZrB2–SiC composites, based on fractional conversion of ZrB2 to ZrO2 in situ, is presented.  相似文献   

11.
Although Cf/ZrB2–SiC composites prepared via direct ink writing combined with low-temperature hot-pressing were shown to exhibit high relative density, high preparation efficiency, and excellent flexural strength and fracture toughness in our previous work, their oxidation and ablation resistance at high and ultrahigh temperatures had not been investigated. In this work, the oxidation and ablation resistance of Cf/ZrB2–SiC composites were evaluated via static oxidation at high temperature (1500°C) and oxyacetylene ablation at ultrahigh temperatures (2080 and 2270°C), respectively. The thickness of the oxide layer of the Cf/ZrB2–SiC composites is <40 μm after oxidizing at 1500°C for 1 h. The Cf/ZrB2–SiC composites exhibit non-ablative properties after oxyacetylene ablation at 2080 and 2270°C for >600 s, with mass ablation rates of 3.77 × 10−3 and 5.53 × 10−3 mg/(cm2 s), and linear ablation rates of −4.5 × 10−4 and −5.8 × 10−4 mm/s, respectively. Upon an increase in the ablation temperature from 2080 to 2270°C, the thickness of the total oxide layer increases from 360 to 570 μm, and the carbon fibers remain intact in the unaffected region. Moreover, the oxidation and ablation process of Cf/ZrB2–SiC at various temperatures was analyzed and discussed.  相似文献   

12.
《Ceramics International》2022,48(6):8155-8168
In the present study, the effect of oxy-acetylene flame angle on the erosion resistance of SiC/ZrB2–SiC/ZrB2 multilayer coatings with the gradient structure was investigated. To this aim, first, the SiC inner layer was applied by the reactive melt infiltration (RMI) technique; then ZrB2 and ZrB2–SiC layers with 10, 20 and 30%wt. SiC were applied on graphite by the plasma spraying technique. To prevent the oxidation of ZrB2 and SiC particles, the plasma spraying process was performed by a solid protective shield. To evaluate the performance of the coatings in erosive environments, the samples were exposed to oxy-acetylene flame at the angles of 30°, 60° and 90° for 360 s; the destruction mechanism of SiC/ZrB2–SiC/ZrB2 multilayer coatings appeared to be controlled mechanically and chemically. The results of the erosion test showed that at the low flame angles of about 30°, due to the shear forces of oxy-acetylene flame, mechanical erosion overcame the chemical one. With increasing the flame angle, due to raising the surface temperature, chemical erosion overcame the mechanical one; so, most chemical destruction occurred at the flame angle of 90°. Also, the results of the erosion test showed that the total chemical and mechanical destruction at the angle of 60° was greater than that in other angles. Also, among the coatings tested, SiC/ZrB2- 20% wt. SiC/ZrB2 coatings had the best erosion resistance; so, the weight changes under the oxy-acetylene flame at the angles of 30° and 60°, respectively, were about ?0.038%. and ?0.355%; meanwhile, at the angle of 90°, it was about +4.3%.  相似文献   

13.
ZrB2–SiC–BN ceramics were fabricated by hot-pressing under argon at 1800 °C and 23 MPa pressure. The microstructure, mechanical and oxidation resistance properties of the composite were investigated. The flexural strength and fracture toughness of ZrB2–SiC–BN (40 vol%ZrB2–25 vol%SiC–35 vol%BN) composite were 378 MPa and 4.1 MPa m1/2, respectively. The former increased by 34% and the latter decreased by 15% compared to those of the conventional ZrB2–SiC (80 vol%ZrB2–20 vol%SiC). Noticeably, the hardness decreased tremendously by about 67% and the machinability improved noticeably compared to the relative property of the ZrB2–SiC ceramic. The anisothermal and isothermal oxidation behaviors of ZrB2–SiC–BN composites from 1100 to 1500 °C in air atmosphere showed that the weight gain of the 80 vol%ZrB2–20 vol%SiC and 43.1 vol%ZrB2–26.9 vol%SiC–30 vol%BN composites after oxidation at 1500 °C for 5 h were 0.0714 and 0.0268 g/cm2, respectively, which indicates that the addition of the BN enhances oxidation resistance of ZrB2–SiC composite. The improved oxidation resistance is attributed to the formation of ample liquid borosilicate film below 1300 °C and a compact film of zirconium silicate above 1300 °C. The formed borosilicate and zirconium silicate on the surface of ZrB2–SiC–BN ceramics act as an effective barriers for further diffusion of oxygen into the fresh interface of ZrB2–SiC–BN.  相似文献   

14.
ZrB2-MeC and ZrB2-19 vol% SiC-MexCy where Me=Cr, Mo, W were obtained by pressureless sintering. The capability to promote densification of ZrB2 and ZrB2-SiC matrices is the highest for WC and lowest for Cr3C2. The interaction between the components results in the formation of new phases, such as MeB (MoB, CrB, WB), a solid solution based on ZrC, and a solid solution based on ZrB2. The addition of Cr3C2 decreases the mechanical properties. On the other hand, the addition of Mo2C or WC to ZrB2-19 vol% SiC composite ceramics leads increased mechanical properties. Long-term oxidation of ceramics at 1500 °C for 50 h showed that, in binary ZrB2-MexCy, a protective oxide scale does not form on the surface thus leading to the destruction of the composite. On the contrary, triple composites showed high oxidation resistance, due to the formation of dense oxide scale on the surface, with ZrB2-SiC-Mo2C displaying the best performance.  相似文献   

15.
The oxidation of ZrB2–SiC and ZrB2–SiC–ZrSi2 ceramics of different composition has been studied experimentally at 1500 °C in pure oxygen for up to 50 h. ZrB2–SiC–ZrSi2 ceramics proved to be the most oxidation-resistant at ZrSi2 contents of less then 4 wt%. These ceramics were more oxidation-resistant than ZrB2–SiC ceramics. An analytical model of growth kinetics for a multilayered scale based on an oxidation–diffusion balance was developed and tested.  相似文献   

16.
Dense ZrB2–20 vol% SiC ceramics (ZS) were fabricated by hot pressing using self-synthesized high purity ZrB2 and commercial SiC powders as raw materials. The high temperature flexural strength of ZS and its degradation mechanisms up to 1600 °C in high purity argon were investigated. According to the fracture mode, crack origin and internal friction curve of ZS ceramics, its strength degradation above 1000 °C is considered to result from a combination of phenomena such as grain boundary softening, grain sliding and the formation of cavitations and cracks around the SiC grains on the tensile side of the specimens. The ZS material at 1600 °C remains 84% of its strength at room temperature, which is obviously higher than the values reported in literature. The benefit is mainly derived from the high purity of the ZrB2 powders.  相似文献   

17.
The formation of a porous SiC‐depleted region in ZrB2–SiC due to active oxidation at ultrahigh temperatures was characterized. The presence/absence of SiC depletion was determined at a series of temperatures (1300°C–1800°C) and times (5 min–100 h). At T < 1627°C, SiC depletion was not observed. Instead, the formation of a ZrO2 + C/borosilicate oxidation product layer sequence was observed above the ZrB2–SiC base material. At T ≥ 1627°C, SiC was depleted in the ZrB2 matrix below the ZrO2 and borosilicate oxidation products. The SiC depletion was attributed to active oxidation of SiC to form SiO(g). The transition between C formation in ZrO2 (T < 1627°C) and SiC depletion in ZrB2 (T ≥ 1627°C) is attributed to variation in the temperature dependence of thermodynamically favored product assemblage influenced by the local microstructural phase distribution. The growth kinetics of the SiC depletion region is consistent with a gas‐phase diffusion‐controlled process.  相似文献   

18.
《Ceramics International》2016,42(3):4212-4220
To improve the oxidation protective ability of SiC–MoSi2–ZrB2 coating for carbon/carbon (C/C) composites, pre-oxidation treatment and pack cementation were applied to construct a buffer interface layer between C/C substrate and SiC–MoSi2–ZrB2 coating. The tensile strength increased from 2.29 to 3.35 MPa after pre-oxidation treatment, and the mass loss was only 1.91% after oxidation at 1500 °C for 30 h. Compared with the coated C/C composites without pre-oxidation treatment, after 18 thermal cycles from 1500 °C and room temperature, the mass loss was decreased by 30.6%. The improvements of oxidation resistance and mechanical property are primarily attributed to the formation of inlaid interface between the C/C substrate and SiC–MoSi2–ZrB2 coating.  相似文献   

19.
《Ceramics International》2022,48(4):5187-5196
To investigate the silicon/graphite ratio and temperature on preparation and properties of ZrB2–SiC coatings, ZrB2, silicon, and graphite powders were used as pack powders to prepare ZrB2–SiC coatings on SiC coated graphite samples at different temperatures by pack cementation method. The composition, microstructure, thermal shock, and oxidation resistance of these coatings were characterized and assessed. High silicon/graphite ratio (in this case, 2) did not guarantee higher coating density, instead could be harmful to coating formation and led to the lump of pack powders, especially at temperatures of 2100 and 2200 °C. But residual silicon in the coating is beneficial for high density and oxidation protection ability. The SiC/ZrB2–SiC (ZS50-2) coating prepared at 2000 °C showed excellent oxidation protective ability, owing to the residual silicon in the coating and dense coating structure. The weight loss of ZS50-2 after 15 thermal shocks between 1500 °C and room temperature, and oxidation for 19 h at 1500 °C are 6.5% and 2.9%, respectively.  相似文献   

20.
Dense ZrB2-SiC-Al3BC3 ultra-high temperature ceramic composite was fabricated by hot pressing sintering at 1900°C for 1 hour under a pressure of 20 MPa using Zirconium diboride (ZrB2) as the raw material and a powder mixture of SiC, B4C, Al, and carbon as the sintering additive. Al and B4C underwent in situ reaction with carbon powder to produce Al3BC3, which promoted the densification of ZrB2 ceramic. SiC grains were found to be elongated during sintering. The ZrB2-SiC-Al3BC3 composite exhibited excellent mechanical properties, such as high flexural strength of 589 ± 147 MPa and fracture toughness of 7.81 ± 1.09 MPa m1/2. Oxidation behavior of the ZrB2-SiC-Al3BC3 composite was studied in air at 1500°C for 1 hour. A continuous layer of oxides consisting of a mixture of SiO2, Al2SiO5, and Al2O3 was formed on the surface of the ZrB2-SiC-Al3BC3 composite. This layer of oxides efficiently prevented oxygen from diffusing into the specimens during oxidation, which improved the oxidation resistance of the ZrB2 ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号