首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high performance and low cost C/C–SiC composite was prepared by Si–10Zr alloyed melt infiltration. Carbon fiber felt was firstly densified by pyrolytic carbon using chemical vapor infiltration to obtain a porous C/C preform. The eutectic Si–Zr alloyed melt (Zr: 10 at.%, Si: 90 at.%) was then infiltrated into the porous preform at 1450 °C to prepare the C/C–SiC composite. Due to the in situ reaction between the pyrolytic carbon and the Si–Zr alloy, SiC, ZrSi2 and ZrC phases were formed, the formation and distribution of which were investigated by thermodynamics. The as-received C/C–SiC composite, with the flexural strength of 353.6 MPa, displayed a pseudo-ductile fracture behavior. Compared with the C/C preform and C/C composite of high density, the C/C–SiC composite presented improved oxidation resistance, which lost 36.5% of its weight whereas the C/C preform lost all its weight and the high density C/C composite lost 84% of its weight after 20 min oxidation in air at 1400 °C. ZrO2, ZrSiO4 and SiO2 were formed on the surface of the C/C–SiC composite, which effectively protected the composite from oxidation.  相似文献   

2.
Chemical vapor infiltration and reaction (CVI-R) is used to produce biomorphic high porous SiC ceramics based on biological structures such as paper. The paper fibers are first converted into a biocarbon (Cb) template by a carbonization step. In a second step methyltrichlorosilane (MTS) in excess of hydrogen is infiltrated into the Cb-template by CVI technique, depositing a Si/SiC layer around each fiber. The reaction (R) between biocarbon and excess silicon to form additional silicon carbide occurs during a subsequent thermal treatment as a third step of the ceramization process. Due to the mild infiltration conditions (850–900 °C) the initial micro- and macrostructure of the carbon preform is retained in the final ceramics. The applied characterization methods after every step of the ceramization process are X-ray Photoelectron Spectroscopy (XPS), Raman spectroscopy, Thermal Gravimetric Analysis (TGA), and Scanning Electron Microscopy (SEM). The bending strength of the resulting porous ceramics is measured by the double ring bending test. It is found that a slight excess of free Si in relation to the amount of carbon from the Cb-template must be deposited in the Si/SiC layer to achieve a nearly complete conversion of the Cb-templates into SiC ceramic. The weight gain after infiltration has to be at least 400 wt.%. Varying the infiltration conditions such as temperature, MTS concentration and infiltration time, ceramics in a wide range of porosity (55–80%) and mechanical properties (5–40 MPa) can be produced. A thermal treatment temperature of 1400 °C is found to be optimal for the reaction between the deposited Si and the biocarbon.  相似文献   

3.
以滤纸、酚醛树脂和氧化钛为原料,经过模压成型、固化、碳化及不同条件下渗硅制备了TiC/SiC和TiN/SiC复相陶瓷。通过X射线衍射和扫描电子显微镜研究了TiC/SiC和TiN/SiC复相陶瓷的微观结构和物相组成,测量了复相陶瓷的弯曲强度和断裂韧性。结果表明:真空条件下液态渗硅获得的TiC/SiC复相陶瓷具有多孔的微观结构,其弯曲强度和断裂韧性较小。氮气气氛下液态渗硅制备的TiN/SiC复相陶瓷结构致密,有较高的弯曲强度和断裂韧性。不同反应生成的TiC,TiN陶瓷颗粒对液态硅的润湿性不同,使得生成的复相陶瓷具有不同的微观结构。TiN/SiC复相陶瓷中TiN颗粒的引入,在基体与第二相颗粒间的界面上产生拉应力和压应力,使达到这一区域的裂纹偏转,从而获得增韧效果。  相似文献   

4.
SiC ceramics were prepared with porous carbon preforms derived from phenolic resin by a reaction-forming method. The effects of the structure of the preform pores and the infiltration process on the properties of SiC ceramics were investigated, and components with complex shapes were fabricated by combining this process with stereolithography (SLA). Dense SiC ceramics were obtained from carbon preforms with high apparent porosities, but SiC ceramics with many macrodefects resulted from a carbon preform with an apparent porosity of 39%. The infiltration of molten silicon into the preform pore channel was accelerated under vacuum pressure, resulting in an increase in the depth of the Si infiltration. The growth of SiC was predominantly controlled by carbon diffusion at the last stage of the reaction. The extended grain growth caused the SiC grains to coalesce and some free Si was enveloped in the SiC grains. SiC components with complex geometries were fabricated by combining reaction forming with SLA. The geometry was controlled by SLA.  相似文献   

5.
SiC porous ceramics can be prepared by introducing the polyurethane preparation method into the production process of ceramic biscuits, followed by sintering at 1300?°C for 2?h under N2 flux after the cross-linking of polycarbosilane at 220?°C for 4?h in air. The microstructures, mechanical properties and infiltrations of the SiC porous ceramics are investigated in detail. The best dispersal effect comes from the SiC slurry with xylene as the solvent and a mixture of Silok®7096 (1?wt%) and Anjeka®6041 (4?wt%) as the dispersant. The compressive strength of SiC porous ceramics with high porosity (69.53%) reaches 16.9?MPa. The heat treatment can increase infiltration, the rate of which (4.296?×?10?7 mm2) after the heat treatment at 750?°C in air is approximately two times faster than that before the heat treatment. The SiC porous ceramics fabricated in this study will have potential application in active thermal protection systems.  相似文献   

6.
By utilising soaked millet as a shrinkable pore-forming agent, porous silicon carbide-alumina (SiC-Al2O3) ceramics were prepared via gelcasting. The fabrication of SiC-Al2O3 ceramics based on oxidised and unoxidised coarse-grained SiC was also studied. The water swelling, drying shrinkage, and low-temperature carbonisation of the millet were investigated. We found that the shrinkage of the soaked millet was greater than that of gel body during drying, which left large gaps that prevented shrinkage stresses from destroying the gel body. Low-temperature carbonisation of the millet should be performed slowly at 220–240?°C because its expansion rate increases to 45% at 250?°C, resulting in the cracking of samples. At a constant sintering temperature, the flexural strength of the SiC-Al2O3 ceramics prepared with SiC powders oxidised at 1000?°C was the highest, indicating that oxidised powders can successfully decrease the required sintering temperature and improve the flexural strength of composite ceramics. Based on our optimised process, porous SiC-Al2O3 ceramics were sintered at 1500?°C for 2?h. When their skeletons were fully developed, their pore sizes were in the range of 1.5–2?mm. Their porosity and flexural strength were 60.2–65.1% and 8.3–10.5?MPa, respectively.  相似文献   

7.
In an effort to develop highly porous silicon carbide for high temperature air filtration, an alternative approach to forming silicon carbide nanowires (SCNW) was developed by blending carbon containing materials with silicon powder and heating these precursors to 1400?°C. The mixing ratio of precursor materials and processing temperature were investigated with respect to the formation of SCNWs. Results indicate that anthracite and starchy materials can yield high purity SiC ceramics, yet these combinations did not produce SiC nanowires. SCNWs were successfully grown from a combination of guar gum and silicon powder precursors at 1400?°C, when held for 4?h with an argon flow rate of 1?L/min. The produced SiC is a high purity product with nanowire diameters of approximately 40?nm and ranging in length from about 100?nm to several micrometers in length. Iron was used to catalyze the nanowire growth through vapor-liquid-solid (VLS) mechanisms by adsorbing the silicon and carbon vapor at the iron rich tip, which then led the nanowire growth. TEM analysis revealed the growth of SCNWs followed the [1,1,2] direction. A wafer comprised of the synthesized SiC nanowire matrix has much higher hardness compared with a wafer of the porous commercially available cordierite.  相似文献   

8.
Herein, the influence of oxidation temperature on the oxidation behavior, microstructure and electromagnetic shielding performance of layered porous ceramics has been systematically investigated. Layered SiC/PyC porous ceramics were prepared by using low-pressure chemical vapor infiltration (LPCVI) method. The oxidized SiC/PyC layered porous ceramics exhibited a negligible mass reduction of 11.94 mg·cm?3, which indicates the excellent high-temperature oxidation resistance of porous ceramics. The electromagnetic shielding performance of SiC/PyC porous ceramics did not exhibit any obvious change even after oxidation at high temperature from 900 to 1300 °C for 10 h. The SET of the layered SiC/PyC porous ceramics was 24.1, 20.0, 19.5, 19.0, 19.8 dB after oxidation at 25 °C, 900 °C, 1000 °C, 1100 °C and 1300 °C, which corresponds to a decrease of 17.01%, 19.09%, 21.16% and 17.84%, respectively. The high-temperature oxidation has rendered a more significant influence on the reflection efficiency of the layered SiC/PyC porous ceramics.  相似文献   

9.
《Ceramics International》2017,43(6):4785-4793
The quality of ceramics parts made by powder injection molding (PIM) method is influenced by a range of factors such as powder and binder characteristics, rheological behavior of feedstock, molding parameters and debinding and sintering conditions. In this study, to optimize the molding parameters, the effect of injection temperature and pressure on the properties of alumina ceramics in the LPIM process were thoroughly studied. Experimental tests were conducted on alumina feedstock with 60 vol% powder. Injection molding was carried out at temperatures and pressures of 70–100 °C and 0.1–0.6 MPa respectively. Results showed that increase in injection temperature and pressure and the resulting increase in flow rate leads to the formation of void which impairs the properties of molded parts. The SEM studies showed that injection at temperature of 100 °C results in evaporation of binder components. From the processing point of view, the temperature of 80 °C and pressure of 0.6 MPa seems to be the most suitable condition for injection molding. In addition, the effects of sintering conditions (temperature and time) on the microstructure and mechanical properties are discussed. The best final properties were found using injection molding under the above stated conditions, thermal debinding and sintering at 1700 °C during 3 h.  相似文献   

10.
The slurry reactive melt infiltration (RMI) method was used to overcome the shortcomings of the traditional RMI method utilized in preparing the large-irregular shaped C/C preform. C/C–SiC composite was successfully fabricated via PCS–Si slurry RMI. Results show that it has a favorable physical bonding between the PCS–Si slurry and the C/C preform. After RMI, most of the Si in the PCS–Si slurry coating infiltrated into the C/C preform, the density of the C/C preform increased from 1.24 to 1.52g cm−3, and the open porosity decreased from 27.22% to 18.04%. SiC was formed on the surface as well as in the pores of the C/C preform. The as-received C/C–SiC composite showed a pseudo-ductile fracture behavior with a flexural strength of 76.4MPa. The mass ablation rate of the C/C–SiC composite is 0.34 mg s−1, exhibiting much better ablation resistance than the C/C preform with a mass ablation rate of 1.80 mg s−1.  相似文献   

11.
SiC/mullite composite porous ceramics were fabricated from recycled solid red mud (RM) waste. The porous ceramics were formed using a graphite pore forming agent, RM, Al(OH)3 and SiC in the presence of catalysts. The influence of firing temperature and the pore-forming agent content on the mechanical performance, porosity and the microstructure of the porous SiC ceramics were investigated. Optimal preparation condition were determined by some testing. The results indicated that the flexural strength of specimens increased as a function of firing temperature and a reduction in graphite content, which concomitantly decreased porosity. The ceramic prepared under optimal conditions having 15?wt% graphite and sintered at 1350?°C, demonstrated excellent performance. Under optimal preparation conditions the flexural strength and porosity of the ceramic were 49.4?MPa and 31.4%, respectively. Scanning electron microscopy observation result showed that rod-shape mullite grains endowed the samples with high flexural strength and porosity. X-ray diffraction analysis indicated that the main crystallization phases of the porous ceramics were 6H-SiC, mullite, cristobalite and alumina. This work demonstrates that RM can be sucessfully reused as a new raw material for SiC/mullite composite porous ceramics.  相似文献   

12.
In this paper, the silicon carbide-reduced graphene oxide (SiC/rGO) composites with different content of rGO are investigated. The hot pressing (HP) at 2100?°C for 60?min under a uniaxial pressure of 40?M?Pa resulted in a near fully-dense SiC/rGO composite. In addition, the influence of graphene reinforcement on the sintering process, microstructure, and mechanical properties (fracture toughness, bending strength, and Vickers hardness) of SiC/rGO composites is discussed. The fracture toughness of SiC/rGO composites (7.9MPam1/2) was strongly enhanced by incorporating rGO into the SiC matrix, which was 97% higher than the solid-state sintering SiC ceramics (SSiC) by HP. Meanwhile, the bending strength of the composites reached 625?M?Pa, which was 17.3% higher than the reference materials (SSiC). The microstructure of the composites revealed that SiC grains were isolated by rGO platelets, which lead to the toughening of the composite through rGO pull out/debonding and crack bridging mechanisms.  相似文献   

13.
SiCpowder/Simatrix composites represent a new class of microstructurally toughened materials. The interactions between molten silicon and submicronic SiC powder have been considered since it could originate some limitations on the final properties of the material. Experiments putting in interaction a SiC powder and molten Si were performed while heating up to final values ranging between 1450 and 1600?°C for duration up to 8?h. The volume ratio of SiC and silicon was equal to one and SiC particles were freely dispersed within the liquid. X-ray diffraction analyses demonstrated that the apparent crystallites size increase of SiC powder followed a ripening law corresponding to a limitation either by volume diffusion or by dissolution into the liquid. Depending on the relevant mechanism, the activation energy of the crystallites’ growth has been found equal to 357?±?50?kJ?mol?1 or 441?±?57?kJ?mol?1. An agglomeration-coarsening process of SiC particles was also identified which promoted a quick formation of larger particles.  相似文献   

14.
Biomorphic silicon/silicon carbide ceramics from birch powder   总被引:1,自引:0,他引:1  
A novel process has been developed for the fabrication of biomorphic silicon/silicon carbide (Si/SiC) ceramics from birch powder. Fine birch powder was hot-pressed to obtain pre-templates, which were subsequently carbonized to acquire carbon templates, and these were then converted into biomorphic Si/SiC ceramics by liquid silicon infiltration at 1550 °C. The prepared ceramics are characterized by homogeneous microstructure, high density, and superior mechanical properties compared to biomorphic Si/SiC ceramics from birch blocks. Their maximum density has been measured as 3.01 g/cm3. The microstructure is similar to that of conventional reaction-bonded silicon carbide. The Vicker's hardness, flexural strength, elastic modulus, and fracture toughness of the biomorphic Si/SiC were 19.6 ± 2.2 GPa, 388 ± 36 MPa, 364 ± 22 GPa, and 3.5 ± 0.3 MPa m1/2, respectively. The outstanding mechanical properties of the biomorphic Si/SiC ceramics are assessed to derive from the improved uniform microstructure of the pre-templates made from birch powder.  相似文献   

15.
3D-SiC/Al-Si-Mg interpenetrating composites (IPCs) were fabricated by pressureless infiltration method. Interfaces in the 3D-SiC/Al-Si-Mg IPCs were modificated by using two different kinds of aluminum alloy Al-15Si-10Mg and Al-9Si-6Mg to infiltrate into 3D-SiC performs and different treated 3D-SiC preforms unoxidized or preoxidized in air at 1000?°C, 1100?°C and 1200?°C for 2?h respectively. Results showed that desired interfaces can be achieved in both IPCs made with those two aluminum alloys, as demonstrated by their excellent comprehensive properties. When the Al-15Si-10Mg alloy with excessive Si content is used for infiltration, interfaces in 3D-SiC/Al-Si-Mg IPC fabricated with the unoxidized 3D-SiC preform are directly bonded through atomic matching without any interfacial reaction and the composite has the properties of a thermal conductivity (TC) of 224.5?W/(m?°C), a thermal expansion coefficient (CTE) (RT ~ 300?°C) of 7.04?×?10?6/°C and a bending strength (BS) of 277?MPa. When the Al-9Si-6Mg alloy with a lower Si content is used for infiltration, interface zone with a thickness around 200?nm forms in the 3D-SiC/Al-Si-Mg IPC fabricated with the 3D-SiC preform preoxidized at 1000?°C. The reaction-bonded interface is composed of AlN and MgAl2O4 which have better interface affinity with SiC and can isolate SiC effectively from liquid Al against the formation of detrimental Al4C3 phase. The composite has the properties of a TC of 219.5?W/(m °C), a CTE (RT ~ 300?°C) of 7.66?×?10?6/°C and a BS of 318?MPa.  相似文献   

16.
In this work, we report the fabrication of Silicon infiltrated Silicon Carbide (SiSiC) components by a hybrid additive manufacturing process. Selective laser sintering of polyamide powders was used to 3D print a polymeric preform with controlled relative density, which allows manufacturing geometrically complex parts with small features. Preceramic polymer infiltration with a silicon carbide precursor followed by pyrolysis (PIP) was used to convert the preform into an amorphous SiC ceramic, and five PIP cycles were performed to increase the relative density of the part. The final densification was achieved via liquid silicon infiltration (LSI) at 1500°C, obtaining a SiSiC ceramic component without change of size and shape distortion. The crystallization of the previously generated SiC phase, with associated volume change, allowed to fully infiltrate the part leading to an almost fully dense material consisting of β-SiC and Si in the volume fraction of 45% and 55% respectively. The advantage of this approach is the possibility of manufacturing SiSiC ceramics directly from the preceramic precursor, without the need of adding ceramic powder to the infiltrating solution. This can be seen as an alternative AM approach to Binder jetting and direct ink writing for the production of templates to be further processed by silicon infiltration.  相似文献   

17.
Biomorphic SiC composites were fabricated from wood, including high-density compressed cedar, high-density fiberboard (HDF) and low-density paulownia followed by the fabrication of a preform and liquid silicon infiltration (LSI) process. The degree of molten silicon infiltration was strongly dependent on the cell wall thickness and pore size of the carbon preform. The mechanical properties of the biomorphic SiC composites were characterized by compressive tests at room temperature, 1000 °C and 1200 °C, and the relationship between the mechanical properties and the microstructural characteristics was analyzed. The compressive strength of the biomorphic composites was found to be strongly dependent on their bulk density and decreased as the test temperature increased to 1200 °C. Strength reduction in the biomorphic SiC composites occurred due to the deformation of the remaining Si at elevated temperatures under ambient atmospheric conditions.  相似文献   

18.
《Ceramics International》2023,49(1):707-715
In this study, ZrC–SiC composite ceramics were prepared with varying Zr/Si molar ratios using sol–gel method. Composites were characterized by Fourier-transform infrared spectroscopy (FT–IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). FT–IR analysis confirmed macromolecular network structure of composites, in which the precursor is composed of polyvinyl butyral (PVB) as main chain, silane molecules are interlinked via –OH moieties in PVB side chains, and Zr atoms are crosslinked with Si in corresponding proportion. Ceramic precursor begins to decompose at a temperature exceeding 1300 °C and is completely transformed into ZrC–SiC composite ceramics with corresponding Zr/Si molar ratio at 1600 °C. Raman spectroscopy and TEM results reveal that after annealing at 1600 °C, ZrC powder uniformly covers surface of SiC ceramics, and high-crystallinity graphite carbon covers ZrC powder.  相似文献   

19.
硅锭线切割回收料制备SiC-Si_3N_4陶瓷的研究   总被引:1,自引:0,他引:1  
以硅锭线切割回收料、普通碳化硅粉及硅粉为主要原料,用反应烧结工艺制备了碳化硅结合氮化硅陶瓷。试验着重要研究了颗粒级配及硅粉含量对SiC-Si3N4陶瓷制品的气孔率、力学强度等的影响。结果表明:当回收料占40%,配以40μm,30%,120μm,30%碳化硅粉为颗粒剂配,同时选择硅粉含量为20%时,反应烧结后,气孔率为18.1%,常温抗弯强度可达43.3MPa,可以满足低压铸铝等方面的要求。  相似文献   

20.
In order to improve the oxidation resistance of C/C-SiC composites, a SiC coating was prepared on a C/C-SiC composite by slurry painting combined with a chemical vapor reaction process. The oxidation resistance and microstructural evolution of the coated samples were investigated. The results show that the as-prepared SiC coating contained a large amount of residual silicon, and the presence of these Si promoted the formation of a complete SiO2 glass layer in the initial stage of oxidation. However, the evaporation of the residual Si also accelerated the failure of the SiC coating, which caused the weight loss of the sample to be about 2.2% after oxidation in static air at 1500 °C for 300 h. Attributed to a large number of SiC ceramics in the C/C-SiC composite, the oxidation weight loss rate of the coating sample after coating failure was reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号