首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pb-free bulk ceramics (1-x)[0.65BiFeO3-0.35BaTiO3]-xBa(Zn1/3Nb2/3)O3 were produced by traditional solid-state reaction route. In this experiment, Ba(Zn1/3Nb2/3)O3 (BZN) was introduced to destroy long-range order domains in order to obtain higher energy storage performance. Impedance and XPS analysis indicate that oxygen vacancies exist and participate in relaxation processes at high temperatures. With the increase of BZN content, the dielectric relaxation behavior is improved, the hysteresis loop becomes thinner, remnant polarization decreases, and the breakdown electric field increases to 180 kV/cm in 15BZN. A maximum Wrec (1.62 J/cm3) is eventually reached in 7BZN with great temperature stability. The highest efficiency is 91% in 15BZN with Wrec of 1.28 J/cm3. Charge-discharge tests show that ceramics have a quick discharge time of t0.9 < 0.1 μs, which makes BZN-doped ceramics a potential candidate for energy storage devices.  相似文献   

2.
《Ceramics International》2022,48(24):36478-36489
Recently, BaTiO3-BiMeO3 ceramics have garnered focused research attention due to their outstanding performance, such as thermal stability, energy efficiency and rapid charge-discharge behavior, however, a lower recoverable energy storage density (Wrec) caused by a relatively low Pmax (<30 μC/cm2) mainly hinders practical applications. Herein, the energy density and thermal stability are improved by adding a tertiary component, i.e., Bi0.5Na0.5TiO3, into BaTiO3-BiMeO3, resulting in xBi0.5Na0.5TiO3-modified 0.88BaTiO3-0.12Bi(Zn2/3Nb1/3)O3 ceramics, with x = 0, 0.1, 0.2, 0.3 and 0.4, with superior dielectric properties and eco-friendly impact. Incorporating Bi0.5Na0.5TiO3 with a high saturation polarization and Curie temperature not only significantly enhances Pmax of BaTiO3-Bi(Zn2/3Nb1/3)O3 but also improves Curie temperature of (1-x)[0.88BaTiO3-0.12Bi(Zn2/3Nb1/3)O3]-xBi0.5Na0.5TiO3 system. Combined with complementary advantages, modified ceramics render a superior energy storage performance (ESP) with a high Wrec of 3.82 J/cm3, efficiency η of 94.4% and prominent temperature tolerance of 25–200 °C at x = 0.3. Moreover, this ceramic exhibit excellent pulse performance, realizing discharge energy storage density Wdis of 2.31 J/cm3 and t0.9 of 244 ns. Overall, the proposed strategy effectively improved comprehensive properties of BaTiO3-based ceramics, showing promise in next-generation pulse applications.  相似文献   

3.
Lead-free (1-x)BaTiO3-xSr(Zn1/3Nb2/3)O3 (abbreviated as BT-xSZN, x = 0–0.08) relaxor ferroelectric ceramics were prepared using the traditional solid phase technology, and the effects of SZN modification on their phase structures, microstructures, dielectric performance, ferroelectricity and energy storage performance were studied in detail. A pure perovskite phase was observed in the BT-xSZN ceramics. The BT-based ceramics modified by SZN exhibited refined grain size. As the SZN content was increased, the breakdown strength initially increased and then decreased, and the ferroelectric loops gradually became ‘slim’. The BT-xSZN (x = 0.07) ceramics demonstrated a favourable energy storage performance with high recoverable energy density (Wrec = ~1.45 J/cm3) and energy storage efficiency (η = ~83.12%) at 260 kV/cm. Results indicate that the energy storage performance of BaTiO3 ceramics modified by SZN can be remarkably improved, widening their applications in energy storage at low temperatures.  相似文献   

4.
A series of novel lead-free energy storage ceramics, (0.67-x)BiFeO3-0.33BaTiO3-xBaBi2Nb2O9 (BF-BT-xBBN), were fabricated by traditional solid-state reaction, where bismuth layer-structured BaBiNb2O9 was incorporated into perovskite-structured BiFeO3–BaTiO3 ceramic as an additive. The addition of BaBi2Nb2O9 increased the relaxor behavior and breakdown strength of BF-BT ceramics due to the formation of polar nanoregionals (PNRs), inducing enhanced energy storage performance. The composite ceramics, with x = 0.08, showed a large recoverable energy density (Wrec) of 3.08 J/cm3 and an outstanding energy storage efficiency (η) of 85.57% under an applied electric field of 230 kV/cm. Moreover, the composite ceramics exhibited excellent thermal stability and high stability toward different frequencies in a temperature range of 20–100 °C and a frequency range of 0.1–1500 Hz. These results demonstrate great potential of novel BF-BT-xBBN composite ceramics for next-generation energy storage applications.  相似文献   

5.
The piezoelectric strain and resonance performance of 0.37BiScO3-0.6PbTiO3-0.03Pb(Mn1/3Nb2/3)O3 (BS-PT-PMN-xFe) ceramics with different amounts of Fe content addition were investigated from room temperature to 200 °C. Both the piezoelectric strain and resonance performance are improved by Fe addition in wide temperature range. Piezoelectric strain of BS-PT-PMN-xFe with 1 mol% Fe is 0.23%, which is comparable to that of BiScO3-PbTiO3 (BS-PT) ceramics, while the strain hysteresis is only one-third. At 200 °C, the high-field strain coefficient of BS-PT-PMN-Fe with 1 mol% Fe is as large as 700 pm/V. Variation of piezoelectric strain and hysteresis is clearly reducing by Fe addition. The maximum vibration velocity is enhanced up to approximately 1 m/s in 2 mol% Fe-modified BS-PT-PMnN-xFe ceramics, and the vibration velocity is stable from room temperature to 200 °C when the electric voltage magnitude was below 60 Vpp. These results indicate that BS-PT-PMN-xFe ceramics are potential candidates for high-temperature piezoelectric actuator application.  相似文献   

6.
An acceptor-donor co-doped (Ga1/2Nb1/2)0.1Ti0.9O2 ceramic is triple-doped with Al3+, followed by sintering at 1450 °C for 5 h to obtain (AlxGa1/2-xNb1/2)0.1Ti0.9O2 ceramics with improved giant dielectric properties. Homogeneous dispersion of all dopants inside the grains, along with the partially segregated dispersion of the Ga3+ dopant along the grain boundaries, is observed. The (AlxGa1/2-xNb1/2)0.1Ti0.9O2 ceramics exhibit high dielectric permittivities (ε′~4.2–5.1 × 104) and low loss tangents (tanδ~0.007–0.010), as well as a low-temperature coefficients (<±15%) between ? 60 and 200 °C. At 1 kHz, tanδ is significantly reduced by ~4.4 times, while ε′ is increased by ~3.5 times, which is attributed to the higher Al3+/Ga3+ ratio. The value of tanδ at 200 °C is as low as 0.04. The significantly improved dielectric properties are explained based on internal and surface barrier-layer capacitor effects, which are primarily produced by the Ga3+ and Al3+ dopants, respectively, whereas the semiconducting grains are attributed to Nb5+ doping ions.  相似文献   

7.
The (1?x)BaTiO3xBi(Zn2/3Nb1/3)O3 (x = 0.01–0.30) ceramics were synthesized by solid‐state reactions. The solubility limit was determined to be x = 0.20. A systematic structural transition from a tetragonal phase (x ≤ 0.034), to a mixture of tetragonal and rhombohedral phases (0.038 ≤ x ≤ 0.20), and finally to a pseudocubic phase (x ≥ 0.22) at room temperature was identified. Dielectric measurement revealed a ferroelectric (x ≤ 0.04) to relaxor (x ≥ 0.06) transition with permittivity peak broadening and flattening, which was further verified by Raman spectroscopy and differential scanning calorimetry (DSC). Activation energies obtained from the Vogel–Fulcher model displayed an increasing trend from ~0.03 eV for x ~ 0.05, to unusually high values (>0.20 eV) for the compositions with x ≥ 0.15. With the increase in Bi(Zn2/3Nb1/3)O3 content, the polarization hysteresis demonstrated a tendency from high nonlinearity to sublinearity coupled with the reduction in remnant polarization and coervice field. The deconvolution of the irreversible/reversible polarization contribution was enabled by first‐order reversal curve distributions, which indicates that the decreasing polarization nonlinearity with the increase in Bi(Zn2/3Nb1/3)O3 concentration could be related with the change from the ferroelectric domain and domain wall contributions to the weakly coupled relaxor behaviors.  相似文献   

8.
The (0.98-x)(0.6Pb(Mg1/3Nb1/3)O3-0.4PbTiO3)-xPb(Yb1/3Nb1/3)O3-0.02Pb(Er1/2Nb1/2)O3 ((0.98-x)(PMN-PT)-xPYN:Er3+) ceramics were prepared through a solid-state reaction method. The phase structure, piezoelectric response, ferroelectric performance and upconversion emission of the ceramics were systematically investigated. The phase structure, the electrical and optical properties are strongly related to the content of PYN. The optimized piezoelectric response and upconversion emissions of the ceramics were achieved near x = 0.12, which locates in the morphotropic phase boundary (MPB) composition. Furthermore, the temperature sensing behaviors of the resultant compounds based on the thermally coupled levels of 2H11/2 and 4S3/2 of Er3+ ions in the temperature range of 133–573 K were studied by utilizing the fluorescence intensity ratio technique. Additionally, the thermal effect, which is induced by the laser pump power, of the studied ceramics is also investigated and the produced temperature is enhanced from 268 to 348 K with the pump power rising from 109 to 607 mW.  相似文献   

9.
A lead–free multiferroic ceramic 0.7BiFeO3–0.3BaTiO3 showed strong ferroelectric and piezoelectric properties, but weak magnetic and magnetoelectric properties. We herein expected that the electrical and magnetic properties of 0.7BiFeO3–0.3BaTiO3 ceramics could be enhanced by introducing LaFeO3. (0.7–x) BiFeO3–0.3BaTiO3xLaFeO3 (x?=?0–0.2) were synthesized by solid-state reaction. All the ceramics formed a perovskite structure, and a morphotropic phase boundary (MPB) between rhombohedral and orthorhombic phases formed at x?=?0.025. The ceramics with MPB composition had high unipolar strain (Smax = 0.14%), piezoelectricity (d33 = 223 pC/N, d33 * = 350?pm/V), ferroelectricity (Pr = 25.67 mC/cm2) and magnetoelectricity (aME = 466.6?mV/cm·Oe), which can be attributed to addition of La ions. The improved phase angle also demonstrated augmentation of ferroelectricity on the microscopic view. The ferromagnetism was evidently improved after LaFeO3 doping, and the remanent magnetization Mr increased from 0.0207 to 0.0622?emu/g with rising x from 0 to 0.075. In conclusion, with strong magnetoelectric properties, the prepared ceramics may be applicable as promising lead–free multiferroic ceramic materials for novel electronic devices.  相似文献   

10.
Broadband dielectric spectroscopy results of various ordered and disordered (1 ? x)Pb(Mg1/3Nb2/3)O3–(x)Pb(Sc1/2Nb1/2)O3 (PMN–PSN) ceramics are investigated in the temperature range from 80 K to 300 K and frequency range from 20 Hz to 2 THz. Dielectric dispersion is very broad and in the ferroelectrics case (x = 1, 0.95) consists of two parts: low-frequency part caused by ferroelectric domains and higher frequency part caused by soft mode. The relaxational soft mode exhibits pronounced softening close to phase transition temperature, as it is typical for order–disorder phase transitions. By substituting Sc3+ by Mg2+ in PMN–PSN ceramics relaxation slows down, and for relaxors (x = 0.2) the most probable relaxation frequency decreases on cooling according to Vogel–Fulcher law.  相似文献   

11.
The (1?x)BaTiO3?xBi(Zn2/3Nb1/3)O3 (x=0.10‐0.25) ceramics were fabricated via solid‐state reactions. Temperature‐dependent polarization measurement reveals that with the temperature lowering, the remnant polarization increases till a maximum value before it decreases, showing a reentrant phenomenon. Absence of apparent switching current peaks in the current density as a function of electric field should indicate the lack of a ferroelectric transition, which is further verified by the consistent macroscopic phase structure from the Raman spectra. An anomalous peak in the full width at half maximum of a deconvoluted mode at ~515 cm?1 suggests the entering of a more disordered state of dipolar dynamics, which may be originated from the competition between the freezing of polar nanoregions and the random interacting fields.  相似文献   

12.
<001> oriented xBi(Mg1/2Ti1/2)O3-(0.7-x)Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (BMT-PMN-PT) textured ceramics are successfully fabricated by the template grain growth method using BaTiO3 platelets as template. BMT-PMN-PT textured ceramics with different BMT contents are studied in terms of crystal structure, microstructures, dielectric and ferroelectric properties, and electric field induced strain. The as-fabricated BMT-PMN-PT textured ceramics were found to have a strong orientation along <001> direction. The frequency dispersion of dielectric constant of BMT-PMN-PT textured ceramics increases gradually and its relaxability becomes stronger with increasing BMT content. A large electric-field induced strain (0.42 % at 4 kV/mm) is obtained in 0.25BMT-0.45PMN-0.3PT textured ceramics with Lotgering factor 0.94, which is about 83 % enhancement than that of the randomly oriented ceramics (0.23 % at 4 kV/mm). The strain of 0.25BMT-0.45PMN-0.3PT textured ceramics have a relatively high thermal stability, with a slight decrease from 0.42 % to 0.28 % in the temperature range of 20−100 °C. Our research suggests that 0.25BMT-0.45PMN-0.3PT textured ceramics have a greatly potential for actuator devices applications owing to its advantages of large electric field induced strain response.  相似文献   

13.
《Ceramics International》2016,42(6):6657-6663
The Solid solutions of (1−x)Ba0.8Sr0.2TiO3xBa(Zn1/3Nb2/3)O3 (BST–BZN) with 0.025≤x≤0.15 were prepared by a high temperature solid-state reaction technique. The effects of the Ba(Zn1/3Nb2/3)O3 addition on the phase composition in the B site on structural and dielectric properties was investigated. The room temperature X-ray diffraction analyses of all ceramics revealed a perovskite phase with a composition dependent symmetry. The temperature and frequency dependence of the dielectric permittivity and losses have been explored. While ceramics of compositions x≤0.05 showed normal ferroelectric behavior, while ceramics with x≥0.1 were of relaxor type. It was found that degree of diffuseness and the relaxor effect increased, whereas the transition temperature (TC or Tm) decreased when both zinc and niobium were introduced in the Ba0.8Sr0.2TiO3 lattice. For the composition with x≥0.1, the frequency depend on Tm, satisfying the Vogel–Fulcher formula, which indicates a relaxor bahavior.  相似文献   

14.
In order to stabilize the perovskite structure and improve the storage energy density (U) of Pb(Tm1/2Nb1/2)O3 (PTmN) based materials, Pb(Mg1/3Nb2/3)O3 (PMN) was introduced into PTmN to form binary (1-x)PTmN-xPMN solid solution ceramics. The XRD patterns show that all the compositions belong to orthorhombic phase with space group Pbnm. The Curie temperature (TC) gradually decreases while the dielectric constant (ε') increases for (1-x)PTmN-xPMN with increasing PMN content. The ε' of each composition above TC obeys the Curie-Weiss law. The appearance double hysteresis loop confirms the antiferroelectric nature of (1-x)PTmN-xPMN (x = 0.02–0.18) ceramics. With the increase of PMN concentration, the maximum polarization slowly increases from 8.58 μC/cm2 to 29.5 μC/cm2 while the threshold electric field (EA-F) gradually declines from 290 kV/cm to 120 kV/cm. The maximum of U (3.12 J/cm3) is obtained in 0.92PTmN-0.08PMN ceramic with moderate EA-F = 220 kV/cm, which makes (1-x)PTmN-xPMN ceramics safe in practical application.  相似文献   

15.
《Ceramics International》2016,42(14):15332-15337
The dielectric, piezoelectric, and ferroelectric properties of Mn-doped and undoped yPb(In1/2Nb1/2)O3-(1−xy)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PIN-PMN-PT) ternary ceramics with morphotropic phase boundary composition have been investigated. Mn-doped PIN-PMN-PT ceramics show obvious hardening characteristics. With 2 mol% Mn doping the mechanical quality factor Qm can be increased to as high as 2000, while the electromechanical coupling factor (kp=57%) is still comparable to that of the undoped counterpart. The internal bias field Ei was analyzed and calculated based on the P-E hysteresis loops for the Mn-doped PIN-PMN-PT ceramic. The relatively high Curie temperature, very high Qm, and low dielectric loss make the Mn-doped PIN-PMN-PT ceramics good candidates for high power and high temperature electromechanical device applications.  相似文献   

16.
《Ceramics International》2022,48(18):26466-26475
Sodium niobate energy storage ceramics with good environmental performance are widely used in electric power conversion and pulse power system, large energy storage density and high efficiency, huge power density and charge and discharge faster. In this work, (1-x)NaNbO3-xBi(Ni2/3Nb1/6Ta1/6)O3 [(1-x)NN-xBNNT] (0.12 ≤ x ≤ 0.18) ceramics system were prepared by solid state reaction method. By introducing Bi(Ni2/3Nb1/6Ta1/6)O3 (BNNT), a relaxation strategy was constructed, which significantly improved the energy storage properties of NaNbO3 (NN) based ceramics. Finally, comparatively high recoverable energy density (Wrec) of 3.43 J/cm3 and large energy storage efficiency (η) of 83.3% were obtained in 0.86NN-0.14BNNT ceramics. Besides discharge energy density (Wd) of 0.69 J/cm3, ultra fast charge-discharge rate (t0.9) of 55 ns, the power density (PD) of 70.66 MW/cm3 and the current density (CD) of 883.23 A/cm2 were also observed in ceramic.  相似文献   

17.
Solid solutions of (1?x)BaTiO3xBi(Mg2/3Nb1/3)O3 (0 ≤ x ≤ 0.6) were prepared via a standard mixed‐oxide solid‐state sintering route and investigated for potential use in high‐temperature capacitor applications. Samples with 0.4 ≤ x ≤ 0.6 showed a temperature independent plateau in permittivity (εr). Optimum properties were obtained for x = 0.5 which exhibited a broad and stable relative εr ~940 ± 15% from ~25°C to 550°C with a loss tangent <0.025 from 74°C to 455°C. The resistivity of samples increased with increasing Bi(Mg2/3Nb1/3)O3 concentration. The activation energies of the bulk were observed to increase from 1.18 to 2.25 eV with an increase in x from 0 to 0.6. These ceramics exhibited excellent temperature stable dielectric properties and are promising candidates for high‐temperature multilayer ceramic capacitors for automotive applications.  相似文献   

18.
Effects of Mg substitution on order/disorder transition, microstructure, and microwave dielectric characteristics of Ba((Co0.6Zn0.4)1/3Nb2/3)O3 complex perovskite ceramics have been investigated. The ordered complex perovskite solid solutions are obtained in Ba((Co0.6?x/2Zn0.4?x/2Mgx)1/3Nb2/3)O3 ceramics (x = 0, 0.1, 0.2, and 0.3), and the ordering degree in the as‐sintered dense ceramics increases with increasing Mg‐substitution amount. The significantly improved Qf value is obtained in the present ceramics with increasing x, whereas the dielectric constant decreases slightly together with some increase of temperature coefficient of resonant frequency. The best combination of microwave dielectric characteristics is obtained in the composition of x = 0.3: εr = 33.7, Qf = 93 800 GHz, and τf = 9.6 ppm/°C. In the Mg‐substituted compositions, clear domain boundaries are obtained and the domain size increases as x increases, the highest Qf value is obtained when the domain size is about 40–60 nm in the ceramics with x = 0.3. The increased ordering degree and the fine ordering domain structure are considered to primarily contribute to the significant increase of Qf value in the Mg‐substituted Ba((Co0.6Zn0.4)1/3Nb2/3)O3 complex perovskite ceramics.  相似文献   

19.
《Ceramics International》2023,49(10):15304-15314
In this paper, a series of Li2Zn[Ti1-x(Co1/3Nb2/3)x]3O8 (0.0 ≤ x ≤ 0.4) ceramics were prepared via the conventional solid-state method. The influences of (Co1/3Nb2/3)4+ complex ions on the phase composition, spectral characteristics, microstructure, and microwave dielectric properties of Li2Zn[Ti1-x(Co1/3Nb2/3)x]3O8 ceramics were studied systematically. XRD analysis accompanied with Rietveld refinements showed that pure Li2ZnTi3O8 solid solution ceramics with the cubic spinel structure were obtained at x = 0.2–0.4. New Raman-active mode of about 858 cm−1 should be attributed to the vibrations of NbO6 due to the high bond energy of Nb–O bonds, exerting a certain impact on the structure and performance of Li2Zn[Ti1-x(Co1/3Nb2/3)x]3O8 ceramics. XPS results indicated that Nb5+ ion donor suppressed the deoxidation process and therefore resulted in the disappearance of Ti3+ ion and oxygen vacancy. The downward trend variation in the εr value with the increase of (Co1/3Nb2/3)4+ content could be explained by the presence of “compressed” cations and “rattling” cations effect. In addition, the Q × f of the current ceramics was closely dependent on relative density, grain size, FWHM, and oxygen vacancy. Good combined microwave dielectric properties of εr = 24.5, Q × f = 91,250 GHz, and τf = −16.8 ppm/°C were achieved for the Li2Zn[Ti0.8(Co1/3Nb2/3)0.2]3O8 ceramic sintered at 1120 °C. High quality factor gives evidence that the Li2Zn[Ti0.8(Co1/3Nb2/3)0.2]3O8 ceramic is an appealing candidate for highly selective microwave devices.  相似文献   

20.
In this study, 0.95?Sr0.7Ba0.3Nb2O6-0.05CaTiO3-x wt% Er2O3 ceramics (SBNCTEx; x?=?0–5) were synthesized using traditional solid-state method, and we investigated the microstructure, energy storage properties as well as the relationship between dielectric breakdown strength and interfacial polarization. As compared with pure 0.95?Sr0.7Ba0.3Nb2O6-0.05CaTiO3 ceramics, the Er2O3 dopants suppressed the grain growth of SBNCTEx, and the doped ones showed the dense microstructure. The secondary phase was found for x?≥?1 according to the EDS results, and the influence of the secondary phase on relative dielectric breakdown strength has also been studied. The dielectric breakdown strength increased from 18.1?kV/mm to 34.4?kV/mm, which is good for energy storage. The energy storage density of 0.28?J/cm3 and the energy storage efficiency of 91.4% were obtained in the SBNCTE5 ceramics. The results indicate that SBNCTE ceramics can be used as energy storage capacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号