首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
HDPE/poly(ethylene‐co‐vinylacetate) (EVA) and low‐density polyethylene (LDPE)/EVA blends were tested and compared with respect to their environmental stress cracking resistance (ESCR) using the Bell‐telephone test. The time to failure in the ESCR test improves with increasing EVA content, and considerable improvements were produced for LDPE/EVA blends while small improvements were observed for HDPE/EVA blends. Thermal, rheological, mechanical, and morphological studies were conducted which established a quantitative relationship between morphological features and composition. Furthermore, the failed specimens were further characterized by scanning electron microscopy and fractographic methodology to investigate the failure mechanism for ESCR samples. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39880.  相似文献   

2.
In this article, we discuss the radiation effects of high‐density polyethylene (HDPE)/ethylene–vinyl acetate (EVA) copolymer blends. In comparison with the low‐density polyethylene/EVA blends, the EVA content in the HDPE/EVA blends had a lower enhancement effect on radiation crosslinking by γ‐ray irradiation in air. The phenomenon is discussed with the compatibility, morphology, and thermal properties of HDPE/EVA blends. The HDPE/EVA blends were partly compatible in the amorphous region, and radiation crosslinking of the HDPE/EVA blend was less significant, although increasing the amorphous region's content of the HDPE/EVA blends and the vinyl acetate content of EVA were beneficial to radiation crosslinking. The good compatibility was a prerequisite for the enhancement effect of EVA on the radiation crosslinking of the polyethylene/EVA copolymer. The radiation crosslinking and the degradation mechanism of HDPE/EVA blends were examined quantitatively by a novel method, the step analysis process of irradiated HDPE/EVA blends with a thermal gravimetric analysis technique. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 553–558, 2002  相似文献   

3.
In this paper, the compatibilization of polypropylene (PP)/high-density polyethylene (HDPE) blend was studied through morphological and interfacial tension analysis. Three types of compatibilizers were tested: ethylene-propylene-diene copolymer (EPDM), ethylene-vinylacetate copolymer (EVA) and styrene-ethylene/butylene-styrene triblock copolymer (SEBS). The morphology of the blends was studied by scanning electron microscopy. The interfacial tension between the components of the blends was evaluated using small amplitude oscillatory shear analysis. Emulsion curves relating the average radius of the dispersed phase and the interfacial tension to the compatibilizer concentration added to the blend were obtained. It was shown that EPDM was more efficient as an emulsifier for PP/HDPE blend than EVA or SEBS. The relative role of interfacial tension reduction and coalescence reduction to particle size reduction was also addressed. It was observed that the role of coalescence reduction is small, mainly for PP/HDPE (90/10) blends compatibilized by EPDM, EVA or SEBS. The results indicated that the role of coalescence reduction to particle size reduction is lower for blends for which interfacial tension between its components is low at compatibilizer saturation.  相似文献   

4.
以炭黑(CB)粒子为导电填料,乙烯-乙酸乙烯共聚物(EVA)和低密度聚乙烯(LDPE)为基体树脂,在HAAKE转矩流变仪中制备了EVA/LDPE/CB导电复合材料,研究了CB粒子的分散形态、共混体系相形态以及其与EVA/LDPE/CB共混体系导电性能的关系。通过DSC、DMA、SEM、溶剂溶解等方法考察了EVA/LDPE两相体系随着EVA含量的变化引起的相转变情况,同时也考察了CB在EVA/LDPE共混体系中的选择性分散情况。  相似文献   

5.
Radiation effects of low‐density polyethylene/ethylene‐vinyl acetate copolymer (LDPE/EVA) blends were discussed. EVA content in the LDPE/EVA blends was an enhancement effect on radiation crosslinking of LDPE/EVA blends, and the highest radiation crosslinking was obtained when the EVA content was reached at 30% when irradiated by γ‐ray in air. The phenomenon was discussed with the compatibility, morphology, and thermal properties of LDPE/EVA blends and found that the enhanced radiation crosslinking of the LDPE/EVA blends was proportional to the good compatibility, the increasing degree of the amorphous region's content of the LDPE/EVA blends, and the vinyl acetate content of EVA. We also found that the vinyl acetate of EVA in the blends is easily oxidized by γ‐ray irradiation in air. The possible radiation crosslinking and degradation mechanism of LDPE/EVA blends was discussed quantitatively with a novel method “step‐analysis” process of irradiated LDPE/EVA blends in the thermal gravimetric analysis (TGA) technique. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1296–1302, 2002  相似文献   

6.
The formation of phase morphology of injection molded HDPE/EVA blends, under the effect of shear stress, has been investigated in detail. The shear stress was induced by dynamic packing injection molding, by which a specimen is forced to move repeatedly in the model by two pistons that move reversibly with the same frequency during cooling. Two kinds of EVA with VA content 16 wt% (16EVA) and 33 wt% (33EVA) were used to investigate the effect of interfacial tension. The phase morphology was viewed both parallel and perpendicular to the shear flow direction, so one can get an overall three-dimensional phase morphology. Low shear stress provided by the pistons has a substantial effect on the phase morphology along the flow direction but is insignificant in the direction perpendicular to the flow direction. Generally, a much elongated and layer-like structure is formed along the flow direction, and spherical droplet-like morphology is formed perpendicular to the flow direction, and the degree of deformation of rubber particles also depends upon their size and elasticity as well as on the interfacial properties between matrix and dispersed phase. For static samples of HDPE/16EVA blends (without shearing), only droplet morphology is formed as 16EVA content increases from10 to 40 wt%. However, under the effect of shear stress (dynamic samples), both droplet and cylinder morphologies can be formed depending on the volume ratio. For static samples of HDPE/33EVA blends, not only droplet, but also cylinder and co-continuous morphology (perpendicular to flow direction) can be formed depending on the volume ratio. For dynamic samples of HDPE/33EVA blends, droplet, cylinder and co-continuous network (co-continuous in both parallel and perpendicular to flow direction) can be formed under the effect of shear stress. The formation of phase morphology is discussed based on interfacial interaction, viscosity ratio, shear stress, and phase inversion.  相似文献   

7.
Bing Na  Qin Zhang  Qiang Fu  Gong Zhang  Kaizi Shen 《Polymer》2002,43(26):7367-7376
As a part of long-term project aimed at super polyolefin blends, in this work, we report the mechanical reinforcement and phase morphology of the blends of high-density polyethylene (HDPE) and ethylene vinyl acetate (EVA) achieved by dynamic packing injection molding. The shear stress (achieved by dynamic packing injection molding) and interfacial interaction (obtained by using EVA with different VA content) have a great effect on phase morphology and thus mechanical properties. The super HDPE/EVA blends having high modulus (1.9–2.2 GPa), high tensile strength (100–120 MPa) and high impact strength (six times as that of pure HDPE) have been prepared by controlling the phase separation, molecular orientation and crystal morphology of the blends. The phase inversion was also found to shift towards lower EVA content under shear stress. The enhancement of tensile strength and modulus originates from the formation of oriented layer, while the high impact strength is related to shear induced phase morphology. DSC studies indicated that the shish kebab crystal structure that also contributes to the enhancement of tensile strength is formed in the oriented layer. The dramatic improvement of impact strength may result from the formation of microfibers and elongated EVA particles along the flow direction. Wu's toughening theory was found non-applicable for the elongated and oriented rubber particles, and a brittle–ductile–brittle transition was observed with increasing EVA content.  相似文献   

8.
In the present work, the rheology, morphology, and interfacial interaction of polyethylene/polyhexane-1 (PE/PH-1) blends with various polyethylene types with different molecular architectures are investigated. The scanning electron microscopy (SEM) images showed a droplet-matrix morphology in all percentage of PH-1 for all blend systems and the size of droplets increased proportionally with PH-1 content. The minimum droplet size is observed for high-density polyethylene (HDPE)/PH-1 blends. The homogeneity of the blends at various compositions is assessed by using viscoelastic parameters determined by dynamic oscillation rheometry in the linear viscoelastic region. A distinct Newtonian plateau at low frequencies is perceived and the variations of complex viscosity (η*) versus angular frequency (ω) for all blend systems are in good agreement with Carreau-Yasuda model. The complex viscosity of samples at various percentages of PH-1 showed the negative deviation from mixing rule in low and high frequencies for all blend systems. The Cole-Cole plots deviated from semi-circular shape at higher percentages of PH-1 than 10wt% in the blends of low-density polyethylene (LDPE)/PH-1 and linear low-density polyethylene (LLDPE)/PH-1. By using emulsion theoretical model, the lowest interfacial tension is found for HDPE/PH-1 blends comparing with its counterparts based on LDPE and LLDPE and the best fitting with experimental data was observed for this blends system.  相似文献   

9.
Uncrosslinked and chemically crosslinked binary blends of low‐ and high‐density polyethylene (PE), with ethylene vinyl acetate copolymer (EVA), were prepared by a melt‐mixing process using 0–3 wt % tert‐butyl cumyl peroxide (BCUP). The uncrosslinked blends revealed two distinct unchanged melting peaks corresponding to the individual components of the blends, but with a reduced overall degree of crystallinity. The crosslinking further reduced crystallinity, but enhanced compatibility between EVA and polyethylene, with LDPE being more compatible than HDPE. Blended with 20 wt % EVA, the EVA melting peak was almost disappeared after the addition of BCUP, and only the corresponding PE melting point was observed at a lowered temperature. But blended with 40% EVA, two peaks still existed with a slight shift toward lower temperatures. Changes of mechanical properties with blending ratio, crosslinking, and temperature had been dominated by the extent of crystallinity, crosslinking degree, and morphology of the blend. A good correlation was observed between elongation‐at‐break and morphological properties. The blends with higher level of compatibility showed less deviation from the additive rule of mixtures. The deviation became more pronounced for HDPE/EVA blends in the phase inversion region, while an opposite trend was observed for LDPE/EVA blends with co‐continuous morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3261–3270, 2007  相似文献   

10.
High density polyethylene (HDPE), calcium carbonate (CaCO3), and ethylene vinyl acetate (EVA) ternary reinforced blends were prepared by melt blend technique using a twin screw extruder. The thermal properties of these prepared ternary blends were investigated by differential scanning calorimetry. The effect of EVA loading on the melting temperature (T m) and the crystallization temperature (T C) was evaluated. It was found that the expected heterogeneous nucleating effect of CaCO3 was hindered due to the presence of EVA. The melt viscosities of the ternary reinforced blends were affected by the % loading of CaCO3, EVA, and vinyl acetate content. Viscoelastic analysis showed that there is a reduction of the storage modulus (G′) with increasing of EVA loading as compared to neat HDPE resin or to HDPE/CACO3 blends only. The morphology of the composites was characterized by scanning electron microscopy (SEM). The dispersion and interfacial interaction between CaCO3 with EVA and HDPE matrix were also investigated by SEM. We observed two main types of phase structures; encapsulation of the CaCO3 by EVA and separate dispersion of the phases. Other properties of ternary HDPE/CaCO3/EVA reinforced blends were investigated as well using thermal, rheological, and viscoelastic techniques.  相似文献   

11.
王利杰  王兆波 《塑料制造》2011,(12):61-63,66
采用动态硫化法制备了乙烯-醋酸乙烯共聚物(EVA)/顺丁橡胶(BR)共混型热塑性弹性体(TPE),通过在树脂相中添加HDPE的方式对复合体系进行增强,对其力学性能及断面微观结构进行了研究。结果表明,对于动态硫化EVA/BR共混型TPE,当HDPE填充量在0~30phr的范围内,其动态硫化产物均表现出TPE的特征;随着树脂相中HDPE用量的提高,复合体系的拉伸强度、撕裂强度、邵氏硬度趋于显著提高,断裂伸长率趋于缓慢增加,而扯断永久形变则始终低于25%;FE-SEM的观察表明,动态硫化TPE的拉伸断面上两相界面结合良好;刻蚀样品表面的硫化胶粒子的尺寸在5mm左右且均匀分散。  相似文献   

12.
Low-density polyethylene/ethylene–vinyl acetate copolymer (LDPE/EVA) blend was irradiated by γ-ray and then expanded by heat as a foamed material. The EVA content in the LDPE/EVA blend was benefited to form a gel. The gel fraction values of LDPE/EVA blend with 30% EVA content were higher than those of other blends in a same given dose; its gel fraction value was 1.7 times as those values of the LDPE without EVA. The gel fractions of the LDPE/EVA blend were increased with radiation dose in oxygen, in air, and in nitrogen, and the formation of gel was limited by oxygen. The oxidation products of the foam of the LDPE/EVA blend were observed in nitrogen, in oxygen by Fourier transform IR spectra. The LDPE/EVA blend system has no protection effect from oxidation in comparison with the LDPE system without EVA, which has less oxidation product than those without EVA in a same given gel fraction. The gel fraction of the LDPE/EVA blend around 25–35%, radiation dose 25±5 kGy, irradiated by γ-ray in air or in nitrogen, with higher expansion ratio (19), smaller cell diameter (0.175 mm), lower apparent density (0.042 g/cm3), higher tensile strength (0.40 MPa), and longer elongation at break (290–360%) foam of the LDPE/EVA blend were selected. These were optimum condition for application in this system. The relations among gel fraction of the LDPE/EVA blend, expansion ratio, apparent density, average cell diameter, and mechanical properties of the foam were discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
The melt rheological behavior of high‐density polyethylene (HDPE)/ethylene vinyl acetate (EVA) blends has been examined with reference to the effect of blend ratio, shear stress, and temperature. The HDPE/EVA blends exhibit pseudoplastic behavior, and the observed rheological behavior of the blends was correlated with the extrudate morphology. The experimental values of the viscosity were compared with the theoretical models. The effect of maleic‐ and phenolic‐modified PE compatibilizers on the viscosity of H70 blend was analyzed and found that compatibilization did not significantly increase the viscosity. The effect of dynamic vulcanization and temperature on the viscosity was also analyzed. The activation energy of the system decreased with increase in EVA content in the system. The phase continuity and phase inversion points of the blends were theoretically predicted and compared with the experimental values. The melt flow index (MFI) values of the blends were also determined and found that the MFI values decreased with increase in EVA content in the system. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

14.
In this paper, the tensile deformation and fracture toughness of high‐density polyethylene (HDPE)/ethylene vinyl acetate (EVA) blends, obtained by dynamic packing injection moulding, have been comprehensively investigated in different directions of rectangle samples, including longitudinal, latitudinal and oblique directions relative to the flow direction. Two kinds of EVA were used with VA content 16 wt% (16EVA) and 33 wt% (33EVA) to control the interfacial interactions. The results indicate that molecular orientation and interfacial interaction play very important roles to determine the tensile behaviour and fracture toughness. Biaxial‐reinforcement of tensile strength was seen for HDPE/16EVA blends but only uniaxial‐reinforcement was observed for HDPE/33EVA blends. The difference is caused by the different interfacial interactions as highlighted by the peel test, scanning electron microscopy (SEM) observation as well as theoretical evaluation. Very high impact strength, decreasing with increasing EVA content, was observed when the fracture propagation is perpendicular to the shear flow direction, while a low impact strength, increasing slightly increasing with EVA content, was seen when the fracture propagation is parallel to the shear flow. The fracture of oblique samples is always along the flow direction instead of along the impact direction or tensile direction. The tensile behaviour and fracture toughness are discussed on the basis of the formation of transcrystalline zones, orientation of EVA particles and matrix toughness of HDPE in different directions. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
Rheology and morphology of cyclic olefin copolymer (COC) / ethylene vinyl acetate copolymer (EVA) immiscible blends with droplet and co-continuous morphologies were experimentally examined and theoretically analyzed using emulsion and micromechanical models. The blends showed an asymmetric phase diagram in which the EVA-rich blends had smaller dispersed size domains as compared to the COC-rich blends. This could be explained based on the higher melt elasticity and viscosity of COC as compared to EVA determined by the rheological investigations. The rheological tools were used to investigate the miscibility of the blends. From the melt viscosity data it is found that the COC/EVA blends show a positive deviation behavior at all compositions which is a hint for strong interaction between the COC and EVA. Analysis of Cole-Cole and Han diagrams revealed that COC/EVA blends, at high EVA contents, were more compatible than COC-rich blends. For the droplet morphology, Palierne model was more successful but, by increasing the dispersed phase content some deviation was observed. In the co-continuous region, the Coran model was in good correspondence with the experimental data as compared to the Veenstra’s model. The storage and loss modulus of EVA-rich blends had a better correspondence with the Palierne model than the COC-rich blends which further confirmed the morphological findings. Interfacial tension calculated for the COC/EVA blends using the Palierne model, were about 1.2 and 15 mN/m2 for EVA-rich (10/90) and COC-rich blends (90/10), respectively. In both EVA-rich and COC-rich systems the interfacial tension increased with increasing the dispersed phase content.  相似文献   

16.
用熔融共混法制备了EVA与农膜再生料(RPE)的共混材料,研究了EVA对农膜再生料的改性作用,并与新料低密度聚乙烯(LDPE)进行了对比研究。对再生料、改性材料和新料进行了力学性能分析、旋转流变分析、转矩流变分析和形貌分析。结果表明,EVA可以显著提高农膜再生料的断裂伸长率,对拉伸强度影响不大,当EVA用量为50%时,改性材料的断裂伸长率和拉伸强度都和新料相当。EVA可以提高再生料的相容性,改善其流变性能和加工性能,使再生料的流变行为接近新料,更容易加工。  相似文献   

17.
Attempts were made to trace the effect of organoclay (OC) on the rheological and mechanical behaviors of the low density polyethylene (LDPE)/ethylene‐vinyl acetate (EVA) blends. To do this effectively, in addition to LDPE/EVA/OC system, pure LDPE and LDPE/EVA blends were also examined as model systems. The rheological behavior was determined by the capillary rheometer. Morphological characterization was also carried out using X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and theoretical approach based on interfacial energies. Shear viscosity, tensile strength and elastic modulus of LDPE/EVA were found to decrease by increasing the EVA content, while for LDPE/EVA/OC ternary nanocomposites, such properties showed an increase by increasing the content of EVA. Such behavior was explained by the morphological characteristic of the system in which OC was mainly intercalated/exfoliated in the EVA phase. This morphological characteristic was corroborated by the XRD, TEM and interfacial energies data. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

18.
Thermoplastic elastomers were prepared from recycled low density polyethylene [rLDPE] and virgin low density polyethylene (LDPE), respectively, ground tyre rubber (GTR), and ethylene vinyl acetate (EVA) copolymer. The amounts of the rLDPE and GTR were fixed at 40 and 30 wt %, respectively, in the formulations, whereas the LDPE and EVA contents varied each between 0 and 30 wt %. The fresh LDPE served for reduction of the melt viscosity and EVA was used for improving the elastomeric properties. Blends of different compositions (by varying the LDPE/EVA ratio) were produced by twin-screw extrusion and pelletized. Specimens were produced by injection molding and subjected to tensile and instrumented falling weight impact (IFWI) tests. To improve the mechanical performance of the blends, the injection molded specimens were electron beam irradiated at 150 kGy absorbed dose. Static tensile and hysteresis, IFWI and dynamic mechanical thermal analysis tests were performed on the specimens and the fracture surface was inspected with a scanning electron microscope. The results indicated that better rubber-like properties were achieved with increasing EVA content. Moreover, postirradiation proved to be very beneficial, especially for blends containing relative high amounts of EVA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
M. De Sarkar  P.P. De  Anil K. Bhowmick 《Polymer》1998,39(26):6789-6800
New thermoplastic elastomeric blends based on hydrogenated styrene–butadiene rubber (HSBR) and low-density polyethylene (LDPE) were prepared by the melt blending technique. The rheology, structural and mechanical properties were measured as a function of blend composition. The HSBR/LDPE blend had a higher tensile strength, modulus, and work-to-break with low elongation at break compared with those of pure HSBR. X-ray diffraction studies demonstrated co-crystallisation and a remarkable increase in the degree of crystallinity. The improvement in the mechanical properties and the uniform morphology were correlated with the interfacial adhesion and compatibilisation of the HSBR/LDPE blend through ethylene segments. The experimental results for the HSBR/LDPE blends were compared with those for HSBR/high-density polyethylene (HDPE) and SBR/LDPE blends. The mechanical properties of the HSBR/LDPE blend were found to be superior. The results were explained on the basis of morphology and interaction.  相似文献   

20.
王亚珍  张辉  李曙光  张丽叶 《塑料》2004,33(1):20-23
辐射交联LDPE/EVA混合体系泡沫片材表观光滑、柔软,手感好,表观密度较小,材料具有优异的力学性能,较高的拉伸强度、断裂伸长率和撕裂强度。进一步研究了产生宏观性能差异的原因是辐射交联LDPE/EVA混合体系泡沫片材制备成型工艺的特殊性,体系的交联度对制品性能影响很大。通过凝胶分析知道交联度与辐照剂量、LDPE树脂的物理性能和EVA树脂在混合体系的含量有关。此外,LDPE树脂的物理性能和EVA在混合体系的含量对材料宏观性能也有影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号